J Abbas Mohammed grabbed a staggering offer of CTC 44.91 LPA
J Abbas Mohammad was in a state of absolute euphoria as the news reached him. He has been placed with Predli, a top-performing AI company, with a staggering offer of CTC 44.91 LPA. With one more achievement to flaunt, SRM is surging ahead with an endless list of placement offers and achievement stories. Abbas is a final year student of the Department of Computer Science Engineering who has already demonstrated his calibre by grabbing a seat at UC Berkeley through the Semester Abroad Programme. His sheer will and dedication have always helped him break the records and fly to further heights.
SRM University-AP happened to be the perfect place that shaped him up to pursue the career of his dreams. Our collaboration with leading enterprises in the world turned out to be an excellent avenue for many to walk ahead to a horizon of opportunities. The Department of Corporate Relations & Careers Services is also doing an amazing job in training the students and encouraging them to apply for the best available prospects. Let us listen to Abbas as he pours out his excitement.
“I am truly delighted to have received this high-paying placement offer. And all of this became possible with the exposure I received from my university. I kept abreast of the latest technologies in the software industry and applied them through practical projects as part of our co-curricular activities in classrooms and university labs such as the Next Tech Lab. The experienced faculty and specially curated curriculum we follow here will always give an extra edge to the students. I am indeed thankful to Dr Sujith Kalluri and Dr Priyanka for assisting me on several occasions”, he said.
“It is the Semester Abroad Program at UC Berkeley, which allowed me to build a strong international networks, that eventually led to this offer. I’m immensely fortunate to land the job of my dream. In future, I hope to advance professionally and adapt to greater leadership roles with the goal of starting my own venture”, remarked Abbas.
- Published in CR&CS, CR&CS NEWS, CSE NEWS, Departmental News, News, Students Achievements
Introducing perovskite-based catalyst for microbial fuel cell
Microbial fuel cells (MFCs) are biochemical systems producing green energy through the microbial degradation of organic contaminants in wastewater. The Oxygen Reduction Reaction (ORR) that takes place at MFC cathode decides the overall output of energy generation. Hence, the selection of ORR catalyst becomes pivotal in MFC fabrication for its efficiency and cost effectiveness. Gopa Nandikes P, PhD Scholar, Department of Environmental Science, proposes perovskite-based nanocatalyst as an excellent replacement to Platinum in his paper “Perovskite-Based Nanocomposite Electrocatalysts: An alternative to Platinum ORR Catalyst in Microbial Fuel Cell Cathodes”. The paper is published in ‘Energies Journal’ having an Impact Factor of 3.04.
The paper comprehensively summarises all the studies conducted with perovskite-based ORR catalyst in MFC, its unique reaction mechanism and the synergistic effect with carbon. The paper also throws light into various challenges and prospects to further improve the ORR activity of perovskite-based catalysts.
Abstract of the Research
Microbial fuel cells (MFCs) are biochemical systems having the benefit of producing green energy through the microbial degradation of organic contaminants in wastewater. The efficiency of MFCs largely depends on the cathode oxygen reduction reaction (ORR). A preferable ORR catalyst must have good oxygen reduction kinetics, high conductivity, and durability, together with cost-effectiveness. Platinum-based electrodes are considered a state-of-the-art ORR catalyst. However, the scarcity and higher cost of Pt are the main challenges for the commercialization of MFCs; therefore, in search of an alternative, cost- effective catalysts, those such as doped carbons and transition-metal based electrocatalysts have been researched for more than a decade. Recently, perovskite-oxide based nanocomposites have emerged as a potential ORR catalyst due to their versatile elemental composition, molecular mechanism, and the scope of nanoengineering for further developments. In this article, we discuss various studies conducted and opportunities associated with perovskite-based catalysts for ORR in MFCs. Special focus is given to a basic understanding of the ORR reaction mechanism through oxygen vacancy, modification of its microstructure by introducing alkaline earth metals, electron transfer pathways and the synergistic effect of perovskite and carbon. At the end, we also propose various challenges and prospects to further improve the ORR activity of perovskite-based catalysts.
- Published in Departmental News, ENVS News, News, Research News
Lateral load capacity of common building types in India
The Department of Civil Engineering is organising the first physical lecture as part of the Departmental Distinguished Lecture Series on April 12, 2022 from 11.00 pm to 12.30 pm. Prof Hemant B Kaushik from the Department of Civil Engineering, IIT Guwahati is the distinguished speaker of the event. He will deliver a talk on the topic “Lateral load capacity of common building types in India”. This talk will provide detailed insights into the seismic behaviour of different building types in India. Various experimental results of full-scale model tests on shake tables and actuators will also be presented.
Speaker’s Profile
Prof Hemant B Kaushik is currently working at IIT Guwahati in the Department of Civil Engineering and Centre for Disaster Management and Research. He is also the Associate Dean of Academic Affairs and the Head of the Centre for Educational Technology. His research areas broadly include: earthquake resistant design of structures, nonlinear behavior of structures, retrofitting of structures, seismic vulnerability assessment of structures, earthquake damage surveys etc. He was the recipient of the INAE Young Scientist Award in 2010 and 2013. He also received the David Fischetti Award in 2019, presented by the Preservation Engineering Technical Committee (PETC) of the Association for Preservation Technology International (APT), USA. The award recognises an outstanding article in a peer-reviewed publication that advances the field of conservation engineering. Prof Kaushik is also a member of the Earthquake Engineering Sectional Committee, CED 39, Bureau of Indian Standards. He also holds membership in several professional bodies like Earthquake Engineering Research Institute (EERI), USA, American Society of Civil Engineers (ASCE), USA, The Masonry Society (TMS), USA, Indian Society of Earthquake Technology (ISET), India and Institution of Engineers, India. He has contributed several post-earthquake reconnaissance study reports and papers in reputed journals and conferences.
All are invited to join this informative lecture on Tuesday, April 12, 2022, from 11.00 pm to 12:30 pm.
- Published in Civil Engg events, Departmental Events, Events
E-Cell organised induction programme on entrepreneurial leadership
The Department of Entrepreneurship and Innovation organised an induction programme, “Ushering the Next Era- Innovation, Leadership & Entrepreneurship”, to give the students a comprehensive overview of the emerging possibilities in entrepreneurship. Various students who have successfully initiated their own start-up ideas have also shared their experiences.
Udayan Bakshi, Associate Director- Entrepreneurship, introduced the students to the country’s business landscape and rendered them a brief picture of the start-up ecosystem of India. Substantiating his arguments using facts and figures, he instigated the students to develop an innovative spirit and don the role of entrepreneurs capable of transforming the face of the nation.
Prof B V Babu, Dean- School of Engineering and Sciences, presided over and spoke about the legacy of the university. He also reminded the students of the ample avenues left open for students to explore and experience. “We aspire to offer a wholesome learning experience to our students through a gamut of courses ranging from engineering to fine arts and management”, he said. When it comes to entrepreneurship, there are pioneering ventures like Hatchlab Research Centre and Next Tech Lab to support and motivate young researchers who can promote the commercial research culture.
Prof Prakash Jadhav, Head- Innovation, Design and Entrepreneurship Academy (IDEA), enlightened students on the inevitability of trying their hands at entrepreneurship as the country demands more job providers than job seekers to satiate the needs of the growing population. He also coaxed the students to contribute to the Make in India vision by exhibiting their innovatory leadership skills.
A few of our students, Lucklin Medimpudi, Jathin, Divi Gnanesh, Lakshman Tatikonda, Manaswini Surusomayajula, and Himansh Mudigonda, who have displayed their entrepreneurial acumen through ingenious start-up ideas went on to share their experiences and encouraged the students to become part of the E-Cell.
The session was later taken over by Manideep Surusomayajula who elaborated on various initiatives such as the student communities, exploratory competition, and the experiential learning platforms, the E-Cell has embarked on to train our students to perform to the best of their abilities in the industry. There are numerous platforms ranging from international collaborations to global mentorship programmes and women-led start-up initiatives for students to innovate themselves as individuals and as a team.
Mr Bakshi wrapped up the event by referring to the triumphant stories the SRM AP E-cell has witnessed. He reinstated the university’s vision to build strong professionals who can assume the position of entrepreneurial leaders and play a crucial role in nation-building. SRM AP aims to give rise to dozens of skilful professionals having the ability to motivate and inspire sweeping changes that can help the nation progress.
Forging ahead with the light of 44 years: India’s most impactful VC, Prof V S Rao
SRM University- AP is proud to announce that our Vice-Chancellor, Prof V S Rao, has been conferred with EduStar India’s Most Impactful Vice-Chancellor award. The prestigious award ceremony was held on April 9, 2022, in Delhi, hosted by Daily Indian Media and Star Brands. The event was organised to felicitate the “Most Impactful and Most promising Awards specifically for Vice Chancellors & Chancellors”, who have contributed to higher education in India. Prominent leaders of premiere institutions across India were recognised in the ceremony for their outstanding involvement in the field of education.
The prestigious gathering witnessed the participation of about 8% of the Vice-Chancellors of Indian private universities. The noteworthy guidance of these veteran leaders had an enormous impact in the domain of higher education.
Receiving the title award, Prof V S Rao thanked EduStar for recognising his contribution to the higher education industry. He expressed, “The education and training given at BITS Pilani made me what I am today. Receiving this award on the eve of 44 years of service in academics makes it more special. I feel proud to be associated with SRM University-AP, a university focused on research, innovation and entrepreneurship.”Prof V S Rao was one of the significant awardees among the Vice-Chancellors of various universities such as Lovely Professional University, Dy Patil University and many other elite institutions in the country.
“It is a moment of pride for the university to have our Vice-Chancellor awarded with EduStar India’s Most Impactful Vice Chancellor title. On behalf of SRM Group of Institutions, I congratulate Prof V S Rao for this achievement”, said Dr P Sathyanarayanan, President, SRM Group of Institutions.Dr Arindam Chaudhuri, the organiser of the award ceremony, shared his views and thoughts on the need for application-oriented education and emphasised the role of leaders of such universities who could make it happen.
A felicitation ceremony was organised in the university in honour of the respected Vice-Chancellor. Honourable Pro-Vice-Chancellor, Prof D Narayana Rao and Registrar, Dr R Premkumar, were also present at this illustrious occasion.
A hands-on session on lithium-ion battery: assembly and testing
Allowing students to explore more into their learning domain will invariably enhance their quest for knowledge. The more students are encouraged to experiment with problems, tools, and substances they will work with, the better prepared they are to face any challenge head-on. It is also a better rewarding alternative as against the conventional book learning method.
Taking the current scenario into account,imparting hands-on training on cutting-edge developments is an excellent exercise to inculcate scientific spirit in young minds. Such initiatives should be actively promoted to equip students on par with the fast-evolving technological realm. We are delighted to announce that the SRM-Amara Raja Center for Energy Storage Devices, Department of Electronics and Communication Engineering, collaborates with NSS Cell-SRM AP to organise a “Hands-on Session on Lithium-ion Battery: Assembly and Testing” with the sponsorship from the DST-SERB Start-up Research Grant (SRG).
Date: April 14, 2022
Time: 9.30 am to 12.30 pm IST
We invite all the interested students to become part of this invigorating initiative and make the best use of this opportunity to receive an enriching training session. The event is also followed by lunch for all the participants.
- Published in Departmental Events, ECE Events, Events
Accelerating research in the Quantum-dot Cellular Automata domain
The Department of Electronics and Communication Engineering is glad to announce that our PhD scholar, Mr Vasudeva Bevara and BTech students, Mr Shakamuri Narendra Chowdary and Mr Bolem Venkata Surendra Babu, published a paper titled ‘High performance 2n: 1: 2n Reversible MUX/DEMUX Architecture for Quantum-dot Cellular Automata’ in the international journal ‘Numerical Modelling: Electronic Networks, Devices and Fields (SCI Index)’ under the supervision of Dr Pradyut Kumar Sanki.
Abstract of the Research
Quantum-dot Cellular Automata (QCA) lead to fundamental changes in nanoscale technology. It promises small area, low power & high-speed structures for digital circuit design. This paper presents efficient low power structures of Reversible Multiplexer & Demultiplexer (RMD) modules based on the QCA technology. The simulation result shows that the proposed RMD modules have utilised less area & low power consumption. The simulation, layout & energy dissipation analysis of the proposed RMD module has been carried out using the QCA Designer-E simulation tool.
Essentially, CMOS is used as a well-known traditional technology in the design of the Very Large-Scale Integration (VLSI) circuits, which leads to the introduction of QCA as new nanotechnology to overcome the limitations of CMOS technology, such as material, physical, power, heat & economic challenges.
In reversible computation, the power dissipation occurs only when the computation is started or when the output is permanently stored. The reversible logic circuits are being investigated to prevent data loss in irreversible logic circuits. The reversible logic circuits provide zero loss of energy/information making the logic circuits the most suitable for QCA nanotechnologies. This has resulted in widespread interest in the design of reversible logic circuits based on QCA over the last few years.
In this paper, a modular 2n: 1 reversible multiplexer & 1: 2n reversible demultiplexer design in a single circuit is proposed. The 2:1 multiplexer & 1: 2 demultiplexer is realised in a single module i.e., 3 × 3 RMD. The 3 × 3 RMD is formed fundamental building block of the modular 2n: 1 reversible multiplexer & 1: 2n reversible demultiplexer design is extended to large RMD design.
Practical Implementations of the Research
This work can push forward research in the QCA domain and overcome the limitations of Complementary Metal Oxide Semiconductor (CMOS) technology. Soon the era of Beyond CMOS will start as the scaling of the current CMOS technology will reach the fundamental limit. QCA (Quantum-dot Cellular Automata) is the transistor less computation paradigm and viable candidate for Beyond CMOS device technology.
So, they have implemented the High Performance 2n: 1: 2n Reversible MUX/DEMUX Architecture for Quantum-dot Cellular Automata compared to other researcher works. In future, the research team would like to explore deeper into QCA technology and design efficient circuits which are small sized, with less cell count and less power consumption.
- Published in Departmental News, ECE NEWS, News, Research News
Supercapacitor electrodes for enhanced energy storage
The Department of Physics is happy to announce that Prof Ranjit Thapa and his PhD Scholar Mr Samadhan Kapse have published a paper titled “Supercapacitor electrodes based on quasi-one-dimensional van der Waals TiS3 nanosheets: experimental findings and theoretical validation” in the Nature indexed journal ‘Applied Physics Letters’ having an impact factor of 3.79. The Paper is published in collaboration with Abhinandan Patra and Chandra Sekhar Rout from Jain University and Dattatray J Late from Amity University.
Abstract of the Research
To cease the ever-increasing energy demand, additional enthusiastic focus has been given to generate more sustainable energy from alternative renewable sources. The storage of these energies for future usage solely depends on the energy storage devices. A diversity of electrode materials based on two-dimensional (2D) transition metals and their derivatives have enticed the whole world owing to their tunable properties. Transition metal trichalcogenides (TMTCs- MX3 type) is the emergent class of 2D materials that gathered a lot of interest because of their quasi-one-dimensional anisotropic properties with the van der Waals force of attraction in between the layers. Herein, TiS3 being an MX3-type of material is preferred as the electrode for supercapacitor application with detailed experimental investigations and theoretical validation. The highest capacitance attained for TiS3 is found to be 235 F/g (105 C/g) at 5 mV/s with a battery type of charge storage mechanism. The asymmetric device is fabricated using Ti3C2Tx MXene nanosheets as negative electrode and a brilliant 91 % of capacitance retention is accomplished with an extensive potential window of 1.5 V. The investigational discoveries are substantiated by theoretical simulation in terms of the quantum capacitance assessment and charge storage mechanisms.
About the Research
In this work, a battery type TMTC material i.e., TiS3 has been synthesized and characterized by different analytical techniques such as Raman spectroscopy, FESEM and TEM to gain information on its structural and morphological aspects. The electrochemical performance was found to be promising by considering its good energy storage performance. High capacitance of 235 F/g (105 C/g) at 5 mV/s was achieved and the asymmetric supercapacitor devices disclosed outstanding cycling stability of 91 % over 6000 GCD cycles. In addition, the theoretical simulations also validated the experimental findings through the evaluation of the quantum capacitance. The higher conductivity, abundant electrochemical active sites, swift faradic redox kinetics and well-connected pathway for ion transfer characteristics pave the way for TiS3 to emerge as an eminent material for energy storage application in the long run.
Social Implications
Energy storage devices come into picture whenever there is a prerequisite of storing renewable energy. Among the numerous energy storage devices, batteries and ultracapacitors have acquired more popularity in nanotechnology and optoelectronics field. The high stability, accuracy, swift functionality, power density and reversibility are the key factors that have positioned ultracapacitors at the forefront of all energy storage devices. On the contrary, the low energy density and high cost of supercapacitor electrodes try to put them in the back seat of the wheels of the energy industry. Henceforth, in recent times the development of supercapattery (abbreviated for supercapacitor and battery) types of materials has become a way out which tie the aces like high specific power of supercapacitors with the high energy density of batteries. These materials exhibit capacitive or battery type behaviour on the basis of materials properties, electrolytic ions, design of the electrochemical cell. Due to these advantages and superior energy storage performance, the demand for this kind of material is growing.
Theoretical quantum capacitance is an important parameter to investigate the supercapacitor performance of low dimensional materials such as electrodes. This approach is highly cost-effective for the rapid screening of various materials for supercapacitor applications.
- Published in Departmental News, News, Physics News, Research News
Optimising the anaerobic digestion process
Publishing a paper in the second-best journal in the discipline of Environmental Engineering and having an impact factor of 9.7 is obviously a significant achievement. The Department of Environmental Science is elated to inform you that the paper, “Dynamic Simulation and Optimization of Anaerobic Digestion Processes using MATLAB” has been published by Dr Karthik Rajendran, Assistant Professor of Environmental Science, and his PhD student, Mr Prabhakaran G in ‘Bioresource Technology’ journal.
Abstract of the research
Time series-based modelling provides a fundamental understanding of process fluctuations in an anaerobic digestion process. However, such models are scarce in literature. In this work, a dynamic model was developed based on modified Hill’s model using MATLAB, which can predict biomethane production with time series. This model can predict the biomethane production for both batch and continuous processes, across substrates and at diverse conditions such as total solids, loading rate, and days of operation. The deviation between the literature and the developed model was less than ±7.6%, which shows the accuracy and robustness of this model. Moreover, statistical analysis showed there was no significant difference between literature and simulation, verifying the null hypothesis. Finding a steady and optimized loading rate was necessary from an industrial perspective, which usually requires extensive experimental data. With the developed model, a stable and optimal methane yield generating loading rate could be identified at minimal input.
About the research
Anaerobic Digestion (AD) is a natural process that converts organic waste into biogas, in the absence of oxygen, which can be used as cooking fuel or for electricity generation. Biogas generation depends on various operational parameters of the AD processes like temperature, organic loading rate, and pH. For example, the speed of a car depends on various parameters like mileage per litre, type of fuel (petrol or diesel), engine power, type of gear, and road type. The optimum speed of a car can be defined by the manufacturer. Likewise, the optimum biogas/ biomethane can be calculated by computer simulations. If the loading rate is increased, the biogas yield increases up to a particular time and then decreases due to overloading like human bodies (eating a large amount of food may strain or cause failure of the digestive system), then the biogas plant will be a failure.
Optimising the loading rate through experiment was not easy, as multiple trials were necessary and it will take a longer time and high cost. In this work, the researchers did the optimisation based on the loading rate over the time period. The loading rate was optimised to maximum methane production, which also showed the region of stability from an operational perspective.
Practical implementations of the research
The practical implications of this work are, to use it in real-time operations of an AD plant and in research laboratories to estimate the best region of operation in terms of loading rate and yield. This work shows that longer days of operation could optimise better loading rates or could help in reaching a steady-state condition in real-time biogas plants.
Future research plans
Real-time biogas plants are deficient in the availability of data to do the computer simulation by using the mathematical model. To overcome this problem, researchers are planning to do Artificial Intelligence (Machine learning)- based biogas prediction by data-driven techniques. It will reduce the complexity with higher accuracy. In future, the machine learning model will integrate with real-time bioreactor for self-diagnosis and better decision making.
- Published in Departmental News, ENVS News, News, Research News