SRM-AP All News
ALL News
- Dr Writoban Basu Ball receives an outlay of Rs. 26.34 lakhs from DST, Government of India October 13, 2020
Pursuit of discovering new drug molecules to combat diseases
Dr Writoban Basu Ball, Assistant Professor, Department of Biological Sciences, received an outlay of Rs.26.34 lakhs from DBT, Government of India to pursue research on “Targeting Kennedy pathway of cellular phosphatidylethanolamine biosynthesis as a common therapeutic strategy against protozoan parasites like Leishmania donovani, Trypanosoma brucei and Entamoeba histolytica.” Disease-causing intracellular parasites present serious health challenges, which could be fatal if left untreated. For example, Leishmania donovani and Trypanosoma brucei are the causative agents of visceral leishmaniasis and sleeping sickness, respectively. Entamoeba histolytica causes amoebiasis and 100,000 people die each year world-wide from amoebiasis-related complications. The current treatment regimen against these diseases consists of drugs that possess severe toxicity and drug resistance. Toxicity is detrimental to health and drug-resistance causes unresponsiveness of the drug to the parasite, rendering the drug ineffective. Therefore, it has become imperative to discover new drug molecules to combat these diseases.
In his study, Dr Writoban proposes to repurpose an FDA-approved drug meclizine, which can be used as a potential drug against dreadful parasitic infections. He explains. “One rational way to discover new and effective drugs entails identifying pharmacological targets against unique yet essential parasite metabolic pathways which are either absent or redundant in hosts (in the present case humans). One such central metabolic pathway in L. donovani, T. brucei, and E. histolytica is the Kennedy pathway for the biosynthesis of phosphatidylethanolamine (PE), a major lipid molecule of the cell. Without the presence of this lipid molecule, the cellular membranes (plasma membrane, organellar membranes) cannot form. Therefore, the Kennedy pathway is indispensable to parasite survival. On the contrary, in humans, although the Kennedy pathway is present, other pathway of PE biosynthesis is predominant. Hence, the Kennedy pathway offers a potential target to disrupt PE biosynthesis in these parasites without causing any side effects in the human host. In this context, meclizine, an over the counter anti-nausea drug, has been shown to disrupt the Kennedy pathway.”
Dr Writoban’s research is oriented to find safe cures for dreadful parasitic diseases that mostly plagues the underprivileged section of the developing countries like India, and countries of the sub-Saharan Africa. He believes, “The successful implementation of the proposed research scheme would benefit a lot of underprivileged people belonging to the underdeveloped and developing countries, as well as reduce the disease burden of those countries.” Further, Dr Writoban emphasizes, “Getting the grant is only the job half done. I would like to guide this proposal to a fruitful completion so that it can benefit people who need it most. I really want to take this project beyond the bounds of a mere academic exercise.
Continue reading → - Energy-Aware Task Allocation for Multi-Cloud Networks October 2, 2020
Smart algorithm to optimize performance of the heterogeneous multi-cloud network
Dr Sambit Kumar Mishra
As the world goes more digital in the future, the dependability on cloud computing is going to be more. The availability of high-capacity networks, low-cost computers and storage devices as well as the widespread adoption of hardware virtualization, service-oriented architecture and autonomic and utility computing has led to growth in cloud computing. But is it enough? How to improve its performance? How to make it more reliable with high-end technology and impeccable performance quality? Dr Sambit Kumar Mishra’s research has an answer to that.
System Model for Multi-cloud Networks Dr Sambit Kumar Mishra, Assistant Professor, Computer Science and Engineering has published a paper “Energy-Aware Task Allocation for Multi-Cloud Networks” in renowned journal IEEE ACCESS with an Impact Factor: 3.745. The research was done in collaboration with Dr Sonali Mishra, SOA (Deemed to be) University Bhubaneswar, India; Dr Ahmed Alsayat, College of Computer and Information Sciences Jouf University, Al-Jouf, Saudi Arabia; Dr N Z Jhanjhi and Dr Mamoona Humayun, School of Computer Science and Engineering (SCE), Taylor’s University, Malaysia; Dr Ashish Kr. Luhach, The PNG University of Technology, Papua New Guinea Lae, Morobe; Dr Kshira Sagar Sahoo, VNRVJIET, Hyderabad, India.
Example of Direct Acyclic Graph (DAG)with four TasksIn recent years, the growth rate of Cloud computing technology is exponentially, mainly for its extraordinary services with expanding computation power, the possibility of massive storage and all other services with the maintained quality of services (QoS). The task allocation is one of the best solutions to improve different performance parameters in the cloud, but when multiple heterogeneous clouds come into the picture, the allocation problem becomes more challenging. This research work proposed a resource-based task allocation algorithm. The same is implemented and analysed to understand the improved performance of the heterogeneous multi-cloud network. The proposed task allocation algorithm (Energy-aware Task Allocation in Multi-Cloud Networks (ETAMCN)) minimizes the overall energy consumption and also reduces the makespan. The results show that the makespan is approximately overlapped for different tasks and does not show a significant difference. However, the average energy consumption improved through ETAMCN is approximately 14%, 6.3%, and 2.8% in opposed to the random allocation algorithm, Cloud Z-Score Normalization (CZSN) algorithm, and multi-objective scheduling algorithm with Fuzzy resource utilization (FR-MOS), respectively. An observation of the average SLA-violation of ETAMCN for different scenarios is performed.
Energy Consumption Vs SLA Violation when
the number of VMs varies and the number of Task is 100.The multi-cloud strategy offers flexibility to service providers. It allows businesses to be productive while using the proper set of services to optimize their opportunities. Adopting a multi-cloud network enables an enterprise to implement a “best of breed” model for the services. Organizations’ ability to choose the vendor that offers the best price for their workload is added significant advantage of multi-cloud. Thus, the optimization of energy consumption in a multi-cloud environment is necessary for the current generation.However, this proposed work has not considered any priority-oriented users, such as task execution through reserve resource in the network, which will be considered as his future work. The future work also aims to propose a task cum resource-aware scheduling approach that will exploit the nature of the presented workload and efficiently map on the available Cloud resources so that energy consumption will optimize.
Link to the research paper: Please Click Here
Continue reading → - Dr Karthik Rajendran’s research highlights different mechanisms of using algae for wastewater treatment September 25, 2020
Dr Karthik Rajendran, Department of Environmental Science, SRM University-AP, Andhra Pradesh, has published a paper on “Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond” in the Fuel journal, which is published by Elsevier. His research work encompasses wastewater treatment using algae for bioenergy production. In his words, “Conventional wastewater treatment systems use activated sludge processes. This process not only uses energy, but also results in emissions. Wastewater contains valuable nutrients and energy recovery options, which are the least explored. Algae helps in reducing emissions by sequestering carbon which leads to negative emissions. The research highlights different mechanisms of using algae for wastewater treatment.”
India as a country is under water-stress and the need for recycling and reusing water is on the rise. The wastewater contains essential nutrients for agriculture and plant growth which are limited resources available to us. Such limitations have inspired efforts to provide solutions to work on algae as a wastewater treatment method. Processes for the same are studied in this paper to comprehend its efficiency and for developing a sustainable choice for the industry. This work will enable the scientists and industrialists to appreciate the usage of algae as an option for wastewater treatment.
Dr Karthik further provides insights on his current research proceedings by saying, “We are currently working on recovering nutrients including phosphorus and nitrogen from wastewater. We are currently performing the theoretical evaluation of the amount of nutrients that can be recovered from different nutrient recovery technologies including microalgae. Such systems not only reduce emissions, but also reduce the amount of virgin materials used.”
Link to the research paper: Please Click Here
Continue reading → - Dr Karthik Rajendran proposes industrial solutions by exploring mechanisms to produce alternative fuel September 25, 2020
An intriguing paper on “Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae” has been published in Fuel by Dr Karthik Rajendran, Department of Environmental Science, SRM University-AP, Andhra Pradesh. Fossil fuels such as petrol, coal, and natural gas deplete natural resources and increase emissions leading to global warming and climate change. As the transportation sector is heavily dependent on liquid fuels and only a few alternatives are available including ethanol, there is an urgent need for higher energy-dense liquid fuel, which is researched across the world, and butanol is considered as an alternative.
There is a constant conflict between food and fuel where the debate lies on whether to swap agricultural lands to produce fuel. An alternative to tackle this problem is identified to be microalgae which is the third-generation feedstock. This feedstock does not conflict with the production of food, as agricultural land is not necessary for its creation. In his work, Dr. Karthik explored different mechanisms for producing butanol from microalgae.
Dr Karthik has been curious on developing industrially feasible solutions for bioenergy, waste management, and sustainability as these industrial solutions are least researched and transferred. This has motivated him to work on economically viable solutions for industries. Dr Karthik explains, “In this work, the mechanisms and fermentation strategies of butanol production from microalgae is explored. Advancing with the research, our team will work on identification of the bottlenecks pertaining to such pathways along with assessing the profitability of producing butanol from microalgae.”
Link to the research paper: Please Click Here
Continue reading → - Students certified on successfully completing outreach programmes organized by IIRS-ISRO September 23, 2020
SRM University AP-Andhra Pradesh has collaborated with the Indian Institute of Remote Sensing (IIRS) -Indian Space Research Organization (ISRO)’s outreach programme. As part of the association, the students of SRM AP have the excellent opportunity to register for annual courses as well as live and interactive programmes being organized by IIRS-ISRO.
Department of Electronics and Communication Engineering, SRM AP, have participated and successfully completed the programmes offered IIRS-ISRO. Lehitha Paturi, Bharadwaj Kadiyala, and Sai Yasaswini Metla have been awarded the certificate from the IIRS-ISRO on completing the online course on “Satellite Photogrammetry and its Application”. Also, Annapragada Sai Mounika has been certified for taking up the course on “Application of Geoinformatics in Ecological Studies”. Further, Tamatam Sravani Ratna has been accredited for undertaking both the aforementioned programmes organized by IIRS-ISRO. SRM AP encourages the students to proactively avail the interactive distance learning courses and webinars that will enable them to achieve their career goals in aerospace and geospatial technologies and make a mark globally.
Continue reading → - Dr Nimai Mishra’s research on popular fluorescent nanoparticles get published in reputed journal September 23, 2020
Amine-free air- stable perovskite nanocrystals for future optoelectronic devices
Dr. Nimai Mishra, Department of Chemistry, SRM University-AP, Andhra Pradesh, along with his research group comprising of his Ph.D. students – Mr. Syed Akhil and Ms. V.G.Vasavi Dutt, have published “Completely Amine-free Open Atmospheric Synthesis of High Quality Cesium Lead Bromide (CsPbBr3) Perovskite Nanocrystals” in the journal “Chemistry-A European Journal” (Wiley-VCH, Impact factor 4.86).
Cesium Lead Halide Perovskite Nanocrystals (NCs) CsPbX3 (X=Cl, Br, and I) have gained popularity in the last few years due to their high Photoluminescence Quantum Yield (PLQY) owning for Light Emitting Diodes (LEDs), and other significant applications in Photovoltaic and Optoelectronics. Dr Mishra says, “In this research work, we demonstrated a facile and efficient amine- free synthesis of Cesium Lead Bromide Perovskite Nanocrystals using Hydrobromic acid as halide source and n-trioctylphosphine (TOP) as ligand in open atmospheric conditions.” He further explains, “The hydrobromic acid (HBr) served as labile source of bromide ion, thus, this three-precursor (separate precursors for Cs-Pb-Br) approach gives more control over conventional single-source precursor for Pb and Br (PbBr2). The use of HBr paved the way to eliminate oleylamine, as a result, we can completely exclude the formation of labile oleylammonium ion halide.”
Dr Mishra and his research group extensively studied the various Cs-Pb-Br molar ratio and found an optimum condition that was able to stabilize with high PLQY CsPbBr3 NCs. These completely amine-free CsPbBr3 perovskite NCs synthesized using bromine-rich condition, exhibit good stability and durability for more than three months in the form of colloidal solutions and films respectively. Furthermore, they demonstrated stable tunable emission across a wide spectral range, via anion exchange process. More significantly, their work presents an open atmospheric stable CsPbBr3 NCs films demonstrating high photoluminescence (PL), which can be further used for optoelectronic device applications.
These high-quality nanocrystals have the potential to be used as active material in LED devices. Advancing his research, Dr Mishra and his team are planning to make a prototype LED device using their nanocrystals.
Link to the research paper: Please Click Here
Continue reading → - SRM University-AP, Andhra Pradesh inaugurates Orientation Programme 2020 September 16, 2020
The inauguration of the Orientation Programme organized to welcome the fresh batch of students at SRM University-AP, Andhra Pradesh was preceded by an introduction of the various aspects of the university by the management. The dynamic leaders motivated the Freshmen by revealing the differentiating factor of SRM AP that endorses the excellence of the university. Upon invocating the blessings of the Almighty by a prayer, the occasion commenced with an address by Dr P Sathyanarayanan, President. He highlighted his vision of learning beyond the classroom, fostering wisdom and knowledge of the students through a holistic interdisciplinary approach.
Further, Prof V S Rao, Vice-Chancellor, acquainted students with the various processes of SRM AP. He informed students regarding his revolutionizing plans for the students of emphasizing on research from the first semester. He states, “Research should be seamlessly integrated with academic boundaries”. He also inspired students to realize the excitement of science, joy in engineering, and academic rigour. In line with his vision, Prof D Narayana Rao, Pro Vice-Chancellor, emphasized on the contribution of science and technology that led to the progress and superiority of India across nations. Further, he assures quality education to motivate students and urged them to contribute to the development of the nation.
To continue with the orientation programme, eminent personalities have been requested by SRM AP to initiate motivational discussions. Dr. Jaya Prakash Narayana, Former Secretary to Govt. of Andhra Pradesh, Dr R A Mashelkar, FRS, Former Director General CSIR & Chancellor-JIO University, Padma Bhushan Dr. K. Varaprasad Reddy, Chairman Emeritus-Shantha Biotech, Mrs Saritha, IPS, Additional SP-CID, Dr MC Das, Management Consultant-Vijayawada, and Head of the Dept. of Commerce (Retd.)-Loyola College, Mr Vivek Bhide, Entrepreneur, Co-Founder, and Managing Director-TSL Consulting Pvt Ltd, VV Lakshminarayana, Former Joint Director- CBI, Ms Karuna Gopal, President-Foundation for futuristic cities, Mr Ramesh Loganathan, Professor Co-Innovation/Outreach at IIIT Hyderabad, and Ms Anitha Sakuru, Chief Marketing officer-Platifi Solutions, will be delivering lectures during various sessions sprawled across the 2 week programme organized to encourage Freshmen.
Continue reading → - Orientation Programme 2020 September 15, 2020
SRM University-AP, Andhra Pradesh affectionately welcomes the Freshmen 2020 to embark on the erudite journey that would transform their lives, and steer them towards becoming a global professional. The university is organizing an online Orientation Programme from September 16, 2020 till September 29, 2020 to provide insights concerning the life at SRM AP.
At the onset, the dynamic leaders of SRM AP will be addressing the Freshmen on September 16, 2020, at 2 p.m. Dr P Sathyanarayanan, Founder, President & Chairman will be delivering the inaugural address. Further, Prof V S Rao, Vice-Chancellor, will be presenting the welcome speech where he will be introducing the various elements of the university. Finally, Prof D Narayana Rao, Pro Vice-Chancellor, will be presenting the vote of thanks.
Eminent personalities have been requested to initiate motivational discussions during the Orientation Programme. Dr. Jaya Prakash Narayana, Former Secretary to Govt. of Andhra Pradesh, will be speaking on September 17, 2020 at 2.30 p.m., followed by a session at 4 p.m. by Dr R A Mashelkar, FRS, Former Director General CSIR & Chancellor-JIO University. On the next day, Padma Bhushan Dr. K. Varaprasad Reddy, Chairman Emeritus-Shantha Biotech will be delivering a speech at 11 a.m. The students will get to hear from Mrs Saritha, IPS, Additional SP-CID, on September 19, 2020 at 11 a.m. Progressing with the programme, SRM AP requests Dr Nv Warlu, a certified Neurolinguistic Programming trainer, personality development coach, writer, motivator, and educator, to inspire the Freshmen on September 21, 2020 at 10.45 a.m. Also, Dr MC Das, Management Consultant-Vijayawada, and Head of the Dept. of Commerce (Retd.)-Loyola College, will be presenting a lecture on September 22, 2020 at 11 a.m.
Beyond the motivational lectures, SRM AP has requested Mr Ramakrishna Mallela, and Mrs G Sailaja, to organize a three-day session on Heartfulness titled “GOAL (Go On And Lead)”. Mr Ramakrishna, who will be addressing the participants during the Orientation Programme on September 22-23, 2020, is a professional faculty, trainer, coach, and mentor having experience in HR Management spanning across 20 years. Further, Mrs G Sailaja is renowned for imparting training in Heartfulness tools and initiatives for the last 5 years. She will be conducting the session with the young students of SRM AP on September 24, 2020.
Moving ahead, Mr Vivek Bhide, Entrepreneur, Co-Founder, and Managing Director-TSL Consulting Pvt Ltd, will be encouraging the young students of SRM AP on September 23, 2020 at 11 a.m. by speaking on “How to develop a start-up culture”. Further, VV Lakshminarayana, Former Joint Director- CBI, will be taking the dais on September 24, 2020 at 11 a.m. while, Ms Karuna Gopal, President-Foundation for futuristic cities has been invited to speak on September 25, 2020 at 11 a.m. where she will be emphasizing on “Role of Students in Building New India”.
Mr Ramesh Loganathan, Professor Co-Innovation/Outreach at IIIT Hyderabad, will be addressing the students on September 26, 2020 at 11 a.m. Also, Ms. Anitha Sakuru, Chief Marketing officer-Platifi Solutions, will be delivering an entrepreneurial talk on September 28, 2020 at 11 a.m. In addition, the deans, departmental heads, and faculty members of SRM AP will introduce the departments, labs, clubs, facilities, online classes, and centres of the university during various sessions sprawled across the 2 week orientation programme. Along with it, the freshmen will get the opportunity to interact with Prof V S Rao followed by the senior students who would advise and motivate the students to ease their predicaments.
Continue reading → - Novel cost-effective framework for autonomous vehicle infrastructure September 15, 2020
Simulating time-variant channel impulse response for mmWave I2I channels using Doppler spread information
Dr Anirban Ghosh
Dr Anirban Ghosh, Assistant Professor, Electronics and Communication Engineering, has recently published a paper titled “Time Variance of 60 GHz VI2I channel”. The paper is published in the renowned journal Elsevier-Vehicular Communication with an Impact Factor of 4.7. This paper explores the implementation challenges in unlicensed 60 GHz frequency band for autonomous vehicle infrastructure. This work has been implemented in collaboration with his colleagues from NIT Durgapur and collaborators from Brno University under the aegis of Prof. Ales Prokes. This work is also funded by the Science Foundation grant (Czech) and National Sustainability Program grant (Czech) and DST-Core Research Grant(India).
Fig 1: Field test setup at the measurement site
Smart cities are cities on the move; having a mission of delivering people and goods with zero congestion, zero fatality and zero energy wastage. For realising this mission, a smart city needs an intelligent transport system (ITS). As far as the communication aspect of ITS is concerned, historically, the urban ITS planners were more concerned about vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) modes of communication. This is because the V2V and V2I channels are essentially wireless, and establishing reliable low-latency links over these channels is challenging. Infrastructure-to-infrastructure (I2I) communication is also an integral part of the ITS initiative, and due to their rapid, dynamic and non-invasive nature of the installation, wireless I2I links are preferred over wired links in several smart-road based ITS applications. In order to implement wireless I2I communication, transceivers may be fitted with different kinds of roadside units (RSUs), e.g., short height traffic signposts, overhead gantries, and cantilever sign supports. The traditional role of these RSUs is to support the basic ITS goals, i.e. driver assistance or traffic management. As the vehicular networks scale-up, ITS computations are being shifted to the edge, and the RSUs are going to play more prominent roles in the form of edge computing devices. For example, RSUs can form the cloudlet layer of a vehicular fog computing (VFC) architecture for the internet of vehicles (IoV).
Vehicular wireless I2I channels realise fixed-to-fixed (F2F) radio communication between two RSUs. For any F2F radio channel with stationary transmitter (TX) and receiver (RX), the time-variance is caused by the mobility of the scatterers. These mobile scatterers, say passersby for an indoor scenario, or passing vehicles for an outdoor scenario, cause changes in path lengths in a fading multipath channel. When viewed in frequency-domain, this yields a change in carrier frequency termed as Doppler shift which is proportional to the velocity of the scatterer, and the spectral broadening caused by the time rate of change of the channel is measured with the Doppler spread. Information about Doppler spread is critical for V2V applications such as platooning. In the context of V2I applications, accurate estimation of the Doppler spread is required for designing adaptive transceivers, smart antennas and for determining cellular handoffs. Doppler spread information can also be used for I2I applications like speed estimation. The radar-based solution has a lower latency compared to a camera-based solution, owing to the video acquisition and processing time of the later. As the Doppler shift is a linear function of the carrier frequency, it is of greater concern while moving up in the frequency ladder to the millimetre wave (mmWave) regime. The Doppler spread in the unlicensed 60 GHz mmWave band would be 10-30 times that in the current sub-6 GHz band, with a range spanning from 10 Hz to 20 kHz depending on the velocity of the scatterers. Moreover, compared to V2V links, the effect of moving scatterers is much more pronounced in F2F links; walking pedestrians with a velocity order of ∼ 1 m/s or even the tree leaves fluttering in the wind are important for F2F channel modelling. For highways, the moving vehicles have a velocity an order higher (> 10 m/s) and contribute significantly to the time-variance of the roadside wireless I2I links.
Fig 2: Comparison of the measured and
proposed models of ACF and Doppler
Spectrum with existing analytical modelsIn this paper, Dr Ghosh studied the time-variance of a roadside infrastructure to infrastructure (I2I) channel operating at 60 GHz millimetre wave (mmWave) band, where the time-variance is caused by moving vehicles acting as scatterers. At first, measurement data is obtained by placing the transmitter (TX) and the receiver (RX) at different heights to emulate a link between two nonidentical roadside units (RSUs), and time-domain channel sounding is performed by sending complementary Golay sequences from the TX to the RX. A linear piecewise interpolation of the corresponding temporal auto-correlation function (ACF) is used to find the Doppler spread of the I2I channel, where their interpolation method compensates for a slower sampling rate. Next, a framework is presented for the time-variant channel impulse response (CIR) simulation, which focuses on moving scatterers only and validates the linear piecewise ACF model. The framework is useful for time-variant vehicular I2I channel simulation and in speed estimation related vehicular applications. Finally, a double-slope curve-fitted analytical model for ACF is proposed as a generalisation to the linear piecewise model. The proposed model and its Doppler spectrum are found to be in agreement with the analytical results for fixed-to-fixed (F2F) channels with moving scatterers and matches perfectly with the measured data. “Our research has explained a framework for simulating time-variant channel impulse response (CIR) for mmWave I2I channels with moving scatterers using Doppler spread information – which provides means to study the various characteristics of an I2I channel even without carrying out any expensive channel sounding campaign”, said Dr Ghosh.
Dr Ghosh and his collaborators are currently exploring further challenges in communication between vehicles (V2V) in the same frequency range (60 GHz).
To know more about the paper, please visit- https://www.sciencedirect.com/science/article/abs/pii/S2214209620300590?dgcid=coauthor
Continue reading → - SRMAP’s collaborative research on Inertial Electrostatic Confinement with BARC. September 15, 2020
Dr Somesh Tiwari has received Mentoring of Engineering Teachers by INAE (Indian National Academy of Engineering) Fellowship -2020.
Dr Somesh Vinayak Tewari, Assistant Professor, Department of Electronics and Electrical Engineering, brings another honour for SRM University-AP. He has been selected for Mentoring of Engineering Teachers by INAE (Indian National Academy of Engineering) Fellowship -2020. His mentor during the programme will be Dr Archana Sharma, FIE, FNAE, Outstanding Scientist, Bhabha Atomic Research Centre.
The INAE (Indian National Academy of Engineering) provides funding to an Engineering Teacher for carrying out research in the selected/proposed area to be mentored by an INAE fellow. The scheme attempts to increase the knowledge base and is instrumental in building long term collaborations. Such mentoring program helps in bridging the collaboration between an academic area and a research and development organization which is extremely necessary to sow the seeds of research in young and energetic brains so that they are able to translate their research ideas for further growth. This interaction of ideas leads to a win-win situation for both the University and the research organization. The prestigious and highly competitive fellowship receives thousands of applications nationwide though only fifteen of them finally are selected for the fellowship this year by INAE. Dr Somesh is one of fifteen outstanding researchers.
Dr Tiwari will be working on the proposed research topic- “Studies on Inertial Electrostatic Confinement Concept in Deuterium gas environment”. Inertial Electrostatic Confinement (IEC) is an alternative concept to Magnetic and Inertial fusion. IEC fusion device is an extremely compact and simple device, running by high voltage as discharge on Deuterium -Deuterium/Deuterium-Tritium/Deuterium -3He fuel gases. Studies related to IEC find application in the areas of dosimeter calibration, isotope production, radiography, and has medical applications. Such a research is multifaceted and helps an engineering teacher to enhance his skills in experimental areas of high voltage, plasma physics, vacuum techniques, radiation detection and measurement and in numerical methods and simulation leading to a comprehensive analysis of a given problem. During the two months of the fellowship, Dr Archana Sharma will be mentoring the project. It is an excellent opportunity for our faculty to work with such a renowned scientist in such close proximity. The collaboration will be beneficial for both institutions.
Continue reading →