SRM-AP All News
ALL News
- Next-Tech Lab Scaling New Heights: Won Three Hackathons in a Row May 2, 2020
The unstoppable team of Next-Tech Lab of SRM University- AP, has again brought laurels to the University by winning three hackathons in a row. During this lockdown while some devoted their time to newfound hobbies, our young researchers successfully developed a fresh multiplayer virtual reality game – ‘Whack A Mole’ and a cloud-based multiplayer FPS in Virtual Reality- ‘Desert Shooter’. The three-member team has successfully bagged the second prize in the International / Professional Award at SKYHacks2020; Best echoAR Hack at Silicon Valley Hacks; and Best AR/VR hack at HackNow, organized by Cal Hacks, a non-profit organization at the University of Berkeley, California.
Karthik, Koushik & Khushboo (Clockwise)
When asked how the idea of making such a game crossed their minds, Epperla Karthik, a 2nd Year student of Computer science and Engineering and a member of the team, said, “My family loves attending Tradeshows, every time we attend one my dad and I challenge each other to win a game of Whack A Mole. But, due to strict quarantine that my family is following, it’s been a while now for such challenges. My teammates and I, being gaming and virtual reality enthusiasts, decided to develop a VR version of ‘Whack A Mole.’”
‘Whack A Mole’ is a multiplayer virtual reality game that allows users to play against the computer or their families or both! One can use it on iOS or Android. It is built on Unity3D, on top of Photon PUN and GoogleVR SDK. It is also integrated with Google Firebase. “This was the very first time we were working on the development of virtual reality games and networking. As we had to run the game on our phone to record the gameplay, the output video on YouTube is a bit blurry,” explained Khushboo Sharma, another member of the team and a 2nd-year student of Computer Science and Engineering. “We completed the development of the game in only 20hrs, starting from scratch. We developed a few of our own UI elements and game assets. I feel the User-Interface of the app and the effects are pretty cool. VR development is real FUN! Moreover, there are a lot of API and SDK that unity supports,” exclaimed Koushik Bhargav, a 3rd-Year student of Computer Science and Engineering and the third member of the team.
‘Desert Shooter’ is another multiplayer virtual reality game developed by the team that allows users to play against the computer or their families or both. You can connect with your friends and play together. The game consists of a swarm of robot ships moving towards you and you have to protect yourself from them. “The interesting part is that all of this happens in Mixed Reality which makes the game immersive. We built it on Unity3D, on top of Photon PUN and GoogleVR SDK, Echoar. It is also integrated with Google Firebase and the assets are stored in echoar cloud. This project won the best AR/VR hack at “Hack: Now” which is organized by the University of California Berkeley,” said Epperla Karthik.
The team has plans to make this game to be a cross-platform game. Therefore, their next plan of action is to make the web version of it. The team is also planning to release it to production so that users can have an immersive experience of modern gaming techniques.
It is again proved that pure talent can never be put in quarantine. It will always find a way to express itself to the world. Our young developers have brilliantly used the ample time and opportunity to put their brains in best use and to bring recognitions from nationally and globally acclaimed competitions.
Click here for more news articles
Continue reading → - Scaling up waste remediation through nanoenzymes April 30, 2020
Dr. Lakhveer Singh on clean and affordable bioelectrofuels
“Nanoenzyme as a cutting-edge innovation that makes bioelectrofuels more affordable and efficient for sustainable future”
Dr. Lakhveer Singh, Assistant Professor, Department of Environmental Science, publishes a paper on “Bioelectrofuel Synthesis by Nanoenzymes: Novel Alternatives to Conventional Enzyme” in the journal “Trends in Biotechnology” with an Impact factor of 13.74. The paper discusses the vital role of nanozymes to advance Bioelectrochemical cells platforms for improved bioelectrofuels generation and waste remediation. Nanozymes are nanomaterials with intrinsic enzyme-like characteristics that have gained importance over the past decade because of its capability to address the limitations of natural enzymes – low stability, high cost, and difficult storage.
Waste recycle and reuse is the need of the hour, and are the most prioritized research in the 21st century. Innovation with present-day technologies as “Bioelectrochemical cells” with a focus on waste remediation, recovery and reuse is believed to strengthen the resource security along with building a sustainable and resilient society. “In order to mitigate several challenges pertaining to the ineffectual performance of microbial catalysts in electrode frameworks, nanomaterial-based nanozymes exhibit capabilities to boost their efficiency by enhancing microbial connection and interaction with electrode surface.”, explains Dr. Lakhveer.
Mechanisms of Nanoenzyme–Microbe Interaction That Facilitate Bioelectrofuel Production
THe further says, “The application of nanoenzymes to replace natural enzymes for improved bioelectrofuel production has long been under-rated. Recent advancements in bioinspired mimetics have led to applying nanoenzymes as a favourable bifunctional or multifunctional tool to achieve large turnover frequencies and high stability in bioelectrochemical platforms. Despite a few technical impediments, nanoenzymes guarantees clean and affordable bioelectrofuels”.
For long-term operations, biocompatibility is observed to remain a challenge associated with nanoenzymes. This is because of the concurrent shape change of nanoparticles during its gradual decomposition that often alters their electrocatalytic behaviour in response to prolonged operation, thus adversely affecting the electrofuel productivity. This paves the path for the future research work of Dr. Lakhveer which will focus on the preparation of nanoenzymes based electrocatalysts with doping of plasmonic or paramagnetic noble metals. This will counter the issue of mass loading and slow down the gradual decomposition process to ensure uninterrupted bioelectrofuels supply during long-term operation.
Continue reading → - Fostering a safe and healthy workplace at construction site April 30, 2020
British Safety Council applauds JMC Projects (India) Limited – SRM University AP
The green campus of SRM AP, Andhra Pradesh is in the process of expanding to ensure a place that continuously inspires and nurtures the students. The buildings foster a new culture of learning that is multi-dimensional, global, social, experiential, and interactive. Designed by Perkins + Will, the American architecture firm which specializes in educational institutions and has been involved in developing some of the marquee structures in this category, JMC Projects (India) Limited took up the monumental task of constructing the buildings of SRM AP.
British Safety Council has awarded the International Safety Award with Merit 2020 to JMC Projects (India) Limited SRM University AP, Andhra Pradesh for its commitment to keeping the workers and workplaces healthy and safe during the 2019 calendar year. The prestigious award recognizes and celebrates the organizations from around the world which have shown a true dedication to prioritizing the safety of the workers and workplaces and have made outstanding advances to achieve it. It requires organizations to invest in workers’ health, safety, and wellbeing. The business leaders, managers, and staff play a crucial role in making health and safety a reality and inspiring their colleagues to do the same.
The joint venture of JMC Projects (India) Limited and SRM AP have pledged to continue maintaining the international standard in the future.
Continue reading → - Small-World Wireless Sensor Network to Help Making Smart Applications for Industries April 26, 2020
Dr Om Jee Pandey, Assistant Professor, Department of Electronics and Communication Engineering, has recently published two papers in renowned IEEE journals. His paper “Secrecy Performance Analysis of Two-way Relay Non-Orthogonal Multiple Access Systems” was published in IEEE Access Journal, having an impact factor: 4.06. Whereas, “Fault-Resilient Distributed Detection and Estimation over an SW-WSN Using LCMV Beamforming” was published in IEEE Transactions in Network and Service Management (Impact factor: 4.682). The study was done in associations with Prof. Rajesh M Hegde, Department of Electrical Engineering, IIT Kanpur and Prof. Ha H. Nguyen, Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada. His research was focused on developing efficient Wireless Sensor Network services in small-world models. The proposed research can be applied in developing many state-of-the-art applications in the areas related to healthcare systems, climate-smart agriculture, intelligent transportation, home automation, manufacturing, smart utilities, and industries etc.
In order to develop efficient Wireless Sensor Network (WSN) services, several methods have been proposed for node localization, clustering of sensor nodes, new routing algorithms, adaptive duty cycles, usage of mixed-transmission models, placement of intelligent gateways, usage of mobile elements, and bypassing holes. However, the introduction of small-world characteristics in a WSN has hitherto not been used in this context. A small-world network is typically characterized by a low average path length and high average clustering coefficient and has been widely used to model social networks. However, small world models have not been used in the development of WSN. The primary objective of this research is to develop small world models for WSN services such as sensor node localization, data gathering, data fusion, network lifetime maximization, energy-balancing, reduced data transmission delay, time synchronization, energy-harvesting, and robust distributed detection and estimation. A small world WSN reduces the number of hops required for data transmission, and maximal utilization of sensor nodes closer to the sink. Other advantages of small world WSN include efficient bandwidth utilization, increased network lifetime, and fast convergence of event detection and parameter estimation. Small world WSN developed in tandem with novel routing strategies leads to improved WSN services for various applications.
In WSNs, sensor devices transfer the data cooperatively using multiple hops over a network. Multiple hops required for data transmission over a WSN leads to reduced network performance in the context of device localization, energy efficiency, energy balancing, data latency, speed of event detection and parameter estimation, and network robustness. This is because of poor distance estimation between sensor device pairs, maximum utilization of sensor devices closer to the sink, and a short radio range of sensor devices. Hence, the primary focus of this research work is to reduce the number of hops required for data transmission. In this context, Small World Characteristics (SWC) can be introduced in a WSN, leading to a small world WSN (SW-WSN). An SW-WSN is a well-connected network with reduced hop counts between node pairs.
Small world phenomena were first observed by Stanely Milgram in social connectivity of people. Later, it came out as a theory of “six degrees of separation”. Six degrees of separation claims that all people are six, or fewer, social connections away from each other. This theory is also known as the 6 Handshakes rule. Further, small-world phenomena have been investigated in graphs. Subsequently, SWC is observed in wireless networks. In general, small world WSNs (SW-WSNs) are characterized by low Average Path Length (APL) and high Average Clustering Coefficient (ACC). For an undirected WSN with N nodes, representing a regular network, the APL increases linearly with the number of nodes present in the network. On the other hand, in a WSN having SWC the APL, between two randomly selected nodes grows proportionally to the logarithm of the number of nodes in the network. “WSNs are spatial graphs, where links are created using radio connectivity. There is a limit on the radio range of a sensor node, hence in such networks, the long-range connections are generally absent. Thus, these networks are clustered, but they do not experience small-world phenomena. Hence, the primary focus of this work is to develop SW-WSN using various methods leading to efficient WSN services” explained Dr Pandey.
Dr Pandey is now busy to take the studies further. His future projects include-
Continue reading →
• Small World WSN (or SW-WSN) Development for Smart Healthcare.
• Cognitive SW-WSN for Energy-Efficient CPS and IoT applications.
• Climate Smart Agriculture using Cognitive SW Characteristics.
• Low-Latency and Intelligent Transportation over small world CPS.
• Multi Sensor Fusion over SW-WSN for CPS/IoT Applications.
• Information and Context Quality in WSN, IoT and CPS Networks. - Paradigm shift to sustainable systems April 20, 2020
Dr. Lakhveer proposes to reduce the cost of bioreactors
Reputed publishing house Elsevier has published the illuminating research work of Dr. Lakhveer Singh, Assistant Professor, Department of Environmental Science. The book named Bioreactors: Sustainable Design and Industrial Applications in Mitigation of GHG Emissions (1st Edition), is co-edited by Durga Mahapatra, Oregon State University, USA, Scientist and Dr Abu Yousuf, Assistant Professor, Shahjalal University of Science and Technology, Bangladesh.
Dawn of the 21st century has witnessed a solemn crisis in petroleum-derived fuels, consequently causing a major setback in chemicals/bio-products industries. Also, the researchers identify that the problem of climate change needs to be addressed by reducing the emission of greenhouse gases (GHGs). Dr. Lakhveer states, “To cope up with soaring energy demands, the present generation requires a paradigm shift from fossil-based resources to renewables and sustainable systems which accentuates the necessity of bioreactors for employing bioenergy and bio-products recovery”.
Presently, sophisticated bioreactor technologies have resulted in towering industrial production significantly contributing to the global economy and benefiting human life. Bioreactors have a substantial role in building a sustainable economy and providing food, feed, energy and other basic amenities for a quality life. Numerous bioreactors have evolved over time through sustainable research targeting commercialization.
A bioreactor is a vessel-like device that provides a uniform background for microorganisms to grow. It maintains an uninterrupted balance in the biochemical reactions carried out by these microorganisms to produce the desired metabolites. The applications of bioreactors extend to biomass production such as microalgae, single-cell protein, and yeast. For metabolite formation like organic acids, ethanol, antibiotics, aromatic compounds, and pigments, bioreactors are absolute. It also contributes to transforming substrates like steroids along with supplementing to production of both the intra and extracellular enzymes.
Recently, Dr Singh has developed an innovative cost-effective hybrid bioelectrochemical reactor (15.0 L) in collaboration with Oregon State University, USA, capable of generating efficient hydrogen at a cost less than $2/kg of H2 from lignocellulose hydrolysates or wastewater.
“In our research we have developed numerous types of bioreactors ranging in size from 5.0 to 100 L. A few examples are immobilized up-flow bioreactor, two-stage thermophilic and mesophilic fermenter, sequential dark and photobioreactor as well as hybrid bioelectrochemical reactor for bioenergy production and valuable products recovery from various industrial and agriculture waste. “ informs Dr. Lakhveer.
The book “Bioreactors” presents and compares the foundational concepts, state-of-the-art design and fabrication of bioreactors. Solidly based on theoretical fundamentals, it examines various aspects of the commercially available bioreactors, that includes construction, fabrication, design, modeling, simulation, development, operation, maintenance, management, and target applications for biofuels production as well as bio-waste management. Emerging issues in commercial feasibility are explored in the book along with covering the constraints and pathways for upscaling. It also carries out rigorous techno-economic assessment.
“This book provides researchers and engineers in the biofuels and waste management sectors a clear understanding of the actual potential of various advanced bioreactors for their requirements. It allows them to embark on informed decisions while selecting the appropriate technology models for sustainable systems development and commercialization”, says Dr. Lakhveer.
Advancing his work, Dr Singh is developing efficient and economical bioreactors for commercial applications in the energy and water sectors. In this regard, three international patents have been filed. In the next few months, two more of his books are to be published by American Chemical Society, ACS and Elsevier. The books will emphasize issues and frontiers of reactors technology such as operation, novel design, cost analysis, novel electrodes, nano catalytic materials and other extended applications of bioreactors.
Continue reading → - Young minds excelled at national level Hackathon April 5, 2020
Amidst the quarantine, students of SRM AP and members of NEXT TECH LAB, have exhibited their expertise in HACKNITR, a national level hackathon organized by NIT Rourkela on 21-22 March 2020. The outstanding merit of their project has enabled them to bag the Runner-Up and 2nd Runner-Up position at the hackathon.
Team ASTUTE BOTS consulting
Team ASTUTE BOTS, comprising of 1st-year students, Tankala Yuvaraj, Karthikay Gundepudi and Joseph K. Paul, was recognized as the Runner-Up. They used the AI-IoT platform to develop DRONEYES; a prototyped solution that can be used to reduce poaching. It is an aerial reconnoiter which flies in stealth mode and takes the video or photo of a suspected poacher. This is done by the highly trained object detection model called YOLOv3. These eyes not only detect objects on the terra firma but also sends the exact location via GPS. “With the help of cloud technology, we can share the data in real-time so that the user/organization can take the required initiative by locating the exact place of poaching”, explains Karthikay. We were inspired to attend hackathons by Anshuman Pandey, and Next Tech Lab supported this achievement.
Another team PUSH, where Karthik Epperla, 2nd year, and Ishita Agarwal, 1st year, participated, has received the 2nd Runner’s up award. The students worked on an AI-VR-Blockchain based application to help people with autism improve communication, social and other basic abilities required to live in a society. It gives a set of YES/NO questions that are to be answered by either the parent of the child or the adult suffering from Autism and then it matches those answers with the dataset which then returns the level of autism that the child/adult is suffering from. Depending on the level, the user can choose the extremity of VR therapy. When the child goes through the VR session, the parent can view what their child/ adult is doing in the virtual environment using the parent app from anywhere and advise their ward offering extra support to the patient. ” Our application has 3D simulations of real-life situations wherein autistic children/ adults (mostly children) can practice and understand how to behave/react in those situations and overcome their fear while facing a similar situation in real life. “, adds Karthik.
Karthik acknowledges Adithya Ramakrishnan the founder of Next Tech Lab and his lab mate, Lakshmi Vallala for implanting the noble idea that AI can help in the rare medical condition, Autism. They have constantly been in touch with a few special schools and treatment centers to know about the behaviour and nature of autistic people so that they can keep on building different versions of applications.
In the natal stage of their academic career, the students are guided and nurtured in an environment by the Next Tech Lab and the faculty members which inspires them to positively impact the society. The ample exposure offered to the students will not merely encourage them, but also enable them to improve their concepts.
Continue reading → - SRM AP joins COVID-19 fight with a donation of 25 lakhs April 2, 2020
The novel coronavirus has evolved as a pandemic which forced lockdown in many countries including India. The sudden surge in symptomatic cases requires funding for medicines, diagnostic kits, research to develop vaccines, development of medical infrastructure, as well as assisting daily wagers. The entire nation has risen to assist our Indian government to raise funds for the noble cause. In the premise of supporting the government to combat the outbreak, SRM University AP, Andhra Pradesh has offered its support to the government in every way possible.
Pro VC and Director CLM in discussion with the Education Minister
The contribution of 25 lakhs was handed over to the Hon’ble Education Minister Dr. Adimulam Suresh by Pro Vice-Chancellor Prof. D. Narayana Rao, Director of Campus Life and Maintenance Venkataachalam and Media PRO, Venugopal. In this distressing scenario, all the citizens of India are requested to combat against this pandemic by staying at home and taking adequate preventive measures. Dr. P Sathyanaranan, President of SRM university- AP said, “The COVID-19 Pandemic has created an unprecedented global catastrophe and a national public health emergency. In this crisis, the measures taken by the Government of Andhra Pradesh under the leadership of the Hon’ble Chief Minister to combat the COVID-19, leaving no stones unturned, is commendable.”
Earlier this week on Monday, responding to this calamity, SRM Group donated 1.15 crore on behalf of the employees of the institutes under the umbrella of the group. Dr. TR Paarivendhar, Chancellor, and Member of Parliament transferred the fund to Tamil Nadu Chief Minister’s Public Relief Fund.
SRM AP has commenced online classes to ensure that imparting of knowledge to the students is not hindered by the pandemic. View details here
Awareness Campaign on COVID-19: Coronavirus
Click here for more news articles
Continue reading → - Novel Discoveries on CRISPR-Evading Bacteriophages April 1, 2020
Dr Sutharsan Govindarajan’s research papers published in “Nature” and “Nature Microbiology”
Dr Sutharsan Govindarajan, Assistant Professor of Biological Sciences at SRM University-AP has published two papers in highly reputed journals, “Nature” and “Nature Microbiology”. Both papers involve the discovery of novel strategies used by bacteriophages (viruses that kill bacteria) to overcome the bacterial CRISPR-Cas system, which are molecular scissors that are programmed to cut DNA. His findings have massive implications on the society as it has the ability to reshape the boundaries of the Phage-therapy in curing diseases.
In the paper, “A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases”, published in ‘Nature’, researchers from the University of California San Francisco, including Dr Sutharsan of SRM University-AP, discovered that certain large bacteriophages called “Jumbophages” are capable of protecting their genetic material (DNA) from being cut by the bacterial CRISPR-Cas system. In nature, the primary function of the CRISPR-Cas system, which is famous for its genome editing applications, is to cut the DNA of bacteriophages. The researchers made a surprising finding that several CRISPR-Cas enzymes were utterly ineffective in cutting the DNA of jumbophages. Subsequent studies led to the finding that these bacteriophages protect their DNA within a protein compartment called as ‘shell’. The shell provides a ‘safe room’ for the phage DNA and keeps antiviral enzymes, including CRISPR-Cas enzymes at bay. It is the first-time researchers have found that bacteriophages, which are essentially viruses, can employ one strategy to protect its DNA from many different immune systems. Dr Sutharsan says, “usually, this kind of sophisticated DNA protection mechanism is employed by complex eukaryotic cells like humans. However, our findings show that viruses, which have evolved billions of years before eukaryotic cells, also seem to be using a similar strategy. This is mind-boggling”, says Dr Sutharsan, “because our finding is making us to rethink about the current understanding of the evolution of cells on Earth.”
In another finding, which is also co-authored by Dr Sutharsan, the researchers have found a different kind of bacteriophage that protects its DNA by ‘turning off’ the production of the CRISPR-Cas enzymes in bacteria. Thus, this bacteriophage employs an entirely different strategy for the same purpose, i.e., protection of its genetic material. The paper “Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity”, got published in the journal ‘Nature Microbiology’ very recently.
Dr Sutharsan further explained how his research can play a pivotal role in the application of Phage-Therapy, which is a therapeutic strategy where bacteriophages are used to kill antibiotic-resistant bacteria and cure patients suffering from difficult-to-treat bacterial infections. Currently, the success rate of phage therapy is low, and researchers are trying to find the reasons behind this. Dr Sutharsan thinks that CRISPR-resistant bacteriophages, which he studies in his lab, can be a game-changer in phage therapy. However, this idea needs to be tested. Towards this goal, he is currently seeking collaborations with clinicians interested in phage therapy.
When asked about his future research plans, Dr Sutharsan says the “Laboratory of phage-bacteria interaction”, which I am going to establish soon at SRM University – AP, will involve in the discovery of new molecular mechanisms employed by phages and bacteria to defend against each other. Such studies have given us’ Restriction enzymes’, which started the ‘era of gene engineering’, and ‘CRISPR-Cas enzymes’, which started the ‘era of genome engineering’. We hope that our lab at the SRM University – AP will make discoveries that can take us beyond genome engineering.
References:
Nature-A bacteriophage nucleus-like compartment shields DNA from CRISPR
Nature Microbiology- Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity
Dr Sutharsan Govindarajan- https://srmap.edu.in/faculty/sutharsan-govindarajan/
Continue reading → - Pathbreaking research in genetics potent to cure disorders April 1, 2020
Dr. Sutharsan Govindarajan receives prestigious INSPIRE Faculty award
Department of Science and Technology, Government of India has awarded Dr. Sutharsan Govindarajan, Assistant Professor, Department of Biological Sciences, SRM University-AP, the prestigious fellowship “Innovation in Science Pursuit for Inspired Research (INSPIRE)”. This initiative provides funds and a platform to potent young achievers for conducting independent research and strengthening the Science & Technology base. Dr. Sutharsan is to receive a total research grant of 35 lakhs for a period of 5 years as a DST-INSPIRE fellow.
Dr. Sutharsan will establish an independent research lab at SRM University, AP, Andhra Pradesh to focus on CRISPR-Cas biology. “CRISPR technology is a powerful tool for editing genomes. It is capable of changing a single base of DNA out of billions of bases. This invention is potent to cure genetic disorders, enunciating its candidature to receive the Nobel Prize in the future.”, informs Dr. Sutharsan.
Dr. Sutharsan’s research work has the potential to nullify the single limitation of the CRISPR technology- ‘off-target’ effects i.e., unintended base changes that affects the accuracy of DNA editing. Through his research titled “Discovery of novel CRISPR-Cas silencing proteins”, he and his team intend to prevent ‘off-targets’ by identifying and characterizing the novel anti-CRISPR proteins that can inhibit in CRISPR-Cas proteins. Dr, Sutharsan believes, “This will improve the efficiency of CRISPR technology which will be highly useful for gene editing technologies, alleviating a wide range of genetic disorders and diseases in the future”.
Continue reading → - Students showed their mettle at Sports Meet, brought home trophies! March 23, 2020
Football Team of SRM University-AP
There is a famous saying “All work and no play makes Jack a dull boy.” Therefore, here at SRM University-AP, students are always encouraged to go beyond the limits of curricular activities. The Students of SRM-AP have proven to be all-rounders by winning several cups in various segments of different Inter-College Sports Meet. VIT-AP and MVR College of Engineering and Technology have recently organised the Inter College Sports in their respective campuses. Students of SRM-AP merrily participated and successfully bagged winner’s trophy in football and cricket and the runner-up trophy in lawn tennis in Vitopia, Sports Tournament of VIT-AP. They have also secured the winner’s trophy in cricket, and the runner-up trophy in badminton in the Inter-college Sports Championship organised by MVR College of Engineering and Technology.
The football team of SRM-AP was invincible. Their incredible performance throughout the tournament took them straight to the finals where they thrashed VIT-AP, another finalist with a straight 3-0, a resounding victory without any doubt. SRM University-AP team’s captain Ishmael, a 3rd-year Mechanical Engineering student, was able to lead the team successfully. He also turned out to be an ideal strategist. Andrew, another 3rd-year Mechanical Engineering student, sent the ball into the net twice during the match, whereas Venky, 1st-year Computer science and engineering student, supported his team by scoring another goal.
Aiming to Score
Cricket Team with the Trophy
Our cricket team has proven their talent by winning two consecutive champion’s trophy both in VITOPIA and MVR Sports Meet. Jaswanth, a 3rd-year Electronics and Communication Engineering student and the captain of the cricket team, says, “our team has some up-and-coming players. However, at the end of the day, it is the team effort that leads us to success.”
GKV Manikantha hitting the ball
Lawn tennis is another game of hardcore physical strength mixed with ingenious strategies. GKV Manikantha, 1st-year Mechanical Engineering student and a passionate player, won the runner-up trophy at VITOPIA, yet it could not make him happy. He said, “Due to my injury, I could not put up a fight in the finals. I was hurt and therefore had to retire from the game. I am trying to have a speedy recovery and will be back very soon.”
Twelve teams from different colleges participated in the badminton tournament. RK College OF Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, DVR & Dr HS MIC College of Technology, GDMM College of Engineering & Technology were a few among them. Though our team could not secure the first prize, Rathan, a 2nd year CSE student, put up a marvellous fight which brought the university the runner-up trophy.