News

kinetic model interactions

Dr Soumyajyoti Biswas, Assistant Professor, Department of Physics, had two lucky breaks as he got his article “Kinetic Exchange Models of Societies and Economies” featured in the prestigious journal Philosophical Transactions of the Royal Society A, the theme issue co-edited by Dr Biswas himself, along with Dr Guiseppe Toscani from the University of Pavia, and Dr Parongama Sen from the University of Calcutta. Philosophical Transactions of the Royal Society has the prestige of being the world’s longest-running science journal launched in 1665. Publishing high-quality theme issues on topics of current importance and general interest within the physical, mathematical, and engineering sciences, the journal continues its history of influential scientific publishing.

A kinetic model of binary interaction, with conserving or non-conserving exchange, has been an elegant and powerful tool to explain collective phenomena in myriad human interaction-based problems, where an energy consideration for dynamics is generally inaccessible. Nonetheless, in this age of Big Data, seeking empirical regularities emerging out of collective responses is a prominent and essential approach, much like the empirical thermodynamic principles preceding quantitative foundations of statistical mechanics.

Through this theme issue, the authors intend to bring together the current progress in the applications of kinetic exchange models in various applications of societies (opinion formations, rating, social networks, fake news, etc.) and economies (inequality measures, taxation, trade models, behavioral economics, etc.) using numerical simulations, machine learning techniques, analytical methods, and data analysis, reported by physicists, social scientists, mathematicians and economists through some of the original and reviewed articles.

In human interactions, such as a trade (exchange of money) or, discussions or debates (exchange of opinions), following simple dynamical rules, a collection of agents (a society) shows emergent properties that are widely seen in real data (distributions of wealth, formation of consensus, etc.). Without knowing the complexities that are involved at the individual levels, it is, therefore, possible to understand the average properties of the society as a whole. This is reminiscent of simple elastic collisions of ideal gas molecules that give average thermodynamic properties, such as temperature, pressure, etc. without knowing the complexities of the individual atoms. This has been a widely followed route to formulate statistical physical models of societies and economies.

The kinetic exchange models have been a very successful set of tools to understand the socio-economic emergent properties from simple models. Among other things, these models helped understand the growth of economic inequalities, the effects of taxes as well as the spread of opinions. A close quantitative resemblance with real data from various countries of the world demonstrates its usefulness.

The future prospects of the kinetic exchange models for societies and economies include possible predictions of extreme fluctuations in average measurable quantities by looking at the inequality of time series data. The models can help us in identifying the features of the real data that can mirror the underlying extreme fluctuations.

Fourier holography

A paper titled “Sparse reconstruction for integral Fourier holography using Dictionary Learning method” has been published by Dr Inbarasan Muniraj, Dr Karthikeyan Elumalai and Dr Sunil Chinnadurai – Assistant Professors of Electronics and Communications Engineering at SRM University-AP, along with PhD students Lakshmi Kuruguntla and Vineela Chandra Dodda.

The paper proposes reconstructing holograms from fewer data, thereby reducing the need for processing the complete hologram data, which is otherwise computationally expensive.

Abstract: A simplified method was demonstrated to generate a hologram from multiple two-dimensional (2D) images. Sparse reconstruction was shown using the Sequential Generalised K-means (SGK) algorithm. It is shown that the proposed sparse reconstruction method provides a good hologram quality, in terms of peak signal-to-noise ratio, even under ~90% sparsity.

The paper is written in collaboration with Professor John T Sheridan, Vice-Principal for Research & Innovation – College of Engineering & Architecture, Head of School of Electrical and Electronic Engineering, University College Dublin, Ireland.

Holography has been shown useful for biomedical imaging, cryptography, data storage, and entertainment. The future plans of the research group include extending this approach to other holographic systems such as digital holography and holographic microscopy.

The focus of the network keeps changing with every generation of communication technology. The 5G era is waiting for the next generation to bring a remarkable revolution in communication technologies. Applying various changes and modifying the drawbacks of 5G technology can help us to improve the features of the upcoming 6G. The Department of Electronics and Communication Engineering is delighted to inform you that the paper, “Network Resource Allocation for Emergency Management based on Closed Loop Analysis” has been published by Dr Udaya Sankar, Assistant Professor, and BTech students; Sai Jnaneswar J and VMVS Aditya, in “ ITU Journal on Future and Evolving Technologies – 2nd special issue on AI and machine learning solutions in 5G and future networks”.

Abstract of the research

paper publicationTelecommunication systems being a critical pillar of emergency management, intelligent deployment, and management of slices in an affected area, will help emergency responders. Techniques such as automated management of ML (machine learning) pipelines across the edge and emergency responder devices, usage of hierarchical closed-loops, and offloading inference tasks closer to the edge, can reduce latencies for first responders in case of emergencies. This paper describes the major findings of building a Proof of Concept (PoC) for network resource allocation for emergency management using a hierarchical autonomous artificial intelligence (AI)/ML-based closed-loops in the mobile network, which was organized by the Internal Telecommunication Union Focus Group on Autonomous Network (ITU FGAN). The background scenario for this PoC included the interaction between a higher closed-loop in the Operations Support System (OSS) and a lower closed-loop in RAN (Radio Access Network) to intelligently share RAN resources between the public and emergency responder slice. Representation of closed-loop “controllers” in a declarative fashion (Intent), triggering “imperative actions” in the “underlay” based on the intent, setup of a data pipeline between various components, and methods of “influencing” lower layer loops using specific logic/models, were some of the important aspects investigated by various teams. The main conclusions are summarised in this work, along with the significant observations and limitations from the PoC as well as future directions.

Explanation of the research

paper publicatioThis is a collaborative study where the researchers have developed and implemented a hierarchical closed-loop that autonomously handles an emergency case. This project contains several groups working on separate functions such as monitoring, computing, ML selection, and resource allocation. Some presented how the AI agents and the network can be adapted to assist mobile network users in Search, Diagnostic, and Rescue (SDAR) missions. Some integrated the implementation of the closed loops in O-RAN based software. The researcher’s role in this project is to generate the data which will be used for analysis and this gets integrated with another team. Rather than putting dummy data and analysing or creating and training a machine learning model, we use the Simu5g simulator which is library-based on OMNET++ framework to generate data, mainly resource allocation data. In Simu5g they configure the required network, set all the input parameters such as and simulate it for a specific duration of time. After simulation, the various results are obtained like SINR, throughput, resource block allocation, and many more. This data of the selected parameter results is converted into CSV files and handed over to the required for ML. This project blends all the chunks of work like monitoring, computing, ML selection, and resource combination, to facilitate network resource allocation for emergency management.

Practical implementations of the research

In this project, the researchers have gathered the simulated data and want to analyse it and apply machine learning algorithms to improve the condition of existing 5G networks. AI/ML model will help to analyse the data which helps in optimizing resource allocation. Optimization algorithms for resource allocation like Interference minimization, Throughput maximization, and many more. Optimising such parameters would be really helpful for the development of new generation networks.

Collaborations

The paper was developed as part of a build-a-thon track, “ITU AI/ML in 5G Challenge: applying machine learning in communication networks” challenge. The researchers worked under the problem statement “ITU-ML5G-PS-014: Build-a-thon (PoC) Network resource allocation for emergency management based on closed-loop analysis”. This project is guided by Dr. V Udaya Sankar under AI-Designed Wireless (AIDW) Project Simulated network scenarios using simu5g for measuring resource allocation. This build-a-thon challenge was started on June 7, 2021 and ended on November 5, 2021. The research team was placed fifth among 12 teams who participated across the world in the “build a thon” track of the global challenge. While the overall challenge saw over 600 participants across more than 80 countries, the “build a thon” track was a unique coding challenge from ITU FG AN. The team worked on the simulation of the 5G system and corresponding analysis using Simu5G from ITU global partners. After the build-a-thon, the teams that have participated in the build-a-thon under the problem statement “ITU-ML5G-PS-014: Build-a-thon (PoC) Network resource allocation for emergency management based on closed-loop analysis” were collaboratively developed the journal from the observations and results that were made during this build-a-thon.

The current research work focuses on the Implementation of a simulation environment to generate data for model training and testing purposes, and serve as a simulation underlay for testing. The simulations allow us to study various configurations and analyse them to optimize the allocations. For the later stages, various machine learning techniques can be applied for the data that was generated through simulation, and further, the comparison can be done for various machine learning techniques.

The structure of human society is always profoundly affected by the developments happening in the domain of communication. Data security and privacy have always been a concern in the ongoing communication revolution. The Department of Computer Science and Engineering is glad to inform you that the paper, “An Efficient Spatial Transformation-based Entropy Retained Reversible Data Hiding Scheme in Encrypted Images,” has been published by Dr V M Manikandan, Assistant Professor, and his PhD student Mr Shaiju Panchikkil in “Optik Journal” with an impact factor of 2.443.

Abstract of the research

A critical issue with the current communication revolution is data security and privacy, which is an inevitable part of trustworthiness in the communication system. Hence, the applicability of the Reversible Data Hiding schemes (RDH) in this scenario is encouraging and critical, like medical image communication, satellite image transmission, etc. Earlier, we explored Arnold transform in one of our previous works to hide the secret data that uses the Convolutional Neural Network (CNN) model to design a complete RDH scheme. The proposed scheme follows a statistical approach to support recovering the cover image and the embedded information. This approach proves advantageous over the previous work following its computational capability. The scheme designed can retain the entropy of the encrypted images even after embedding the additional information, complementing the security of the encryption algorithm.

Explanation of the research

data securityThe research focuses on hiding information in an encrypted image and transmitting it to the receiver. Earlier, the researchers used the Arnold transform-based image scrambling algorithm to facilitate the data hiding. But at the receiver end, they have used a convolutional neural network model, which acts as a binary classifier to recover the image properly after extracting the hidden information. The researchers had a few overheads over there, like training the model and then sharing the same with the receiver to recover the original image efficiently. To overcome these overheads, they analysed the correlation of neighboring pixels and introduced a statistical measure at the receiver end to recover the exact image.

Social implications of the research

One of the various social implications of the research is an application concerning patient treatment. In a general scenario, during the covid 19 pandemic, people make an online consultation with the doctor by uploading their medical images. If the doctor wants to take a specialist’s opinion, he should send this image and the diagnosis report via a communication medium. The research team’s approach is meaningful in this aspect. The original image is initially encrypted, which makes it unreadable. The diagnosis report information is hidden over the encrypted image. Hence the doctor needs to send only a single file to the specialist. It is also difficult for an external agent or an unauthorized party to decode the report and the image as it is encrypted. Now it is essential to regain the original quality of the recovered image, as any degradation in the quality of the recovered image can lead to a wrong diagnosis. Hence, they have designed the recovery module carefully to extract all the hidden information and recover the original image without compromising its quality.

The researchers are in constant collaboration with Professor Yu-Dong Zhang from the University of Leicester, University Road, Leicester, LE1 7RH, UK, to introduce new strategies to elevate the embedding capacity from the current level without negotiating the quality of the recovered image.

TOP