Current Happenings ENVS News

  • Breakthrough in Nanosecond Laser Conversion for Clean Energy June 5, 2025

    Paper Published SEAS

    The paper titled “Nanosecond Laser-Induced Conversion of Leaf-Like Co-MOF to Nanoscale Co@N-gCarbon for Enhanced Multifunctional Electrocatalytic Performance by Dr Narayanamoorthy Bhuvanendran, Assistant Professor, Department of Environmental Science and Engineering, was published in the ChemSusChem journal with a Q1 rating with an impact factor of 7.5. The study presents a breakthrough in clean energy research with an innovative nanosecond laser-based technique that transforms metal–organic frameworks into high-performance electrocatalysts faster, more energy-efficiently, and eco-friendly.

    Abstract :

    Conversion of metal–organic frameworks (MOFs) into metal-nitrogen-doped carbon (M–N–C) catalysts requires a high-temperature process and longer processing time under a protective atmosphere. This study utilises a low-energy nanosecond laser processing (LP) technique to convert aqueous synthesised 2D leaf-like Co-MOF (L-Co-MOF) into nanoscale cobalt metal encapsulated within a nitrogen-doped graphitic carbon matrix (Co@N-gC, Co-LP) in a shorter period under air atmosphere.

    The laser-induced process results in the formation of Co@N-gC with smaller Co particle size, uniform distribution, and better interaction with the carbon support compared to the conventional pyrolysis process (CP). LP catalysts result in enhanced multifunctional electrocatalytic activity over CP (Co-CP) catalysts owing to the tunable metal–support interaction, higher charge transfer, and presence of multiactive sites.

    Under optimised conditions (laser fluence: 5.76 mJ cm−2 and scan speed: 10 mm s−1), the Co-LP-5 catalyst exhibits better ORR performance, with onset and half-wave potentials of 0.92 and 0.76 V, respectively. Additionally, Co-LP-5 delivers excellent water-splitting performance, with OER and HER overpotentials of 380 and 280 mV, respectively, achieving an overall energy efficiency of 77.85%. Furthermore, Co-LP-5 demonstrates exceptional durability over 48 h of real-time testing, outperforming the Co-CP, and the proposed low-energy LP is viable for fabricating multifunctional catalysts.

    The research focuses on developing new materials for more efficient clean energy production, specifically advanced catalysts that accelerate chemical reactions. Traditionally, creating an effective M–N–C (metal–nitrogen–carbon) catalyst requires heating metal-organic frameworks (MOFs) to high temperatures in oxygen-free environments, which is time-consuming and energy-intensive.

    This study introduces a simpler, faster, and energy-saving approach using nanosecond laser pulses to transform cobalt-containing MOFs into a new material called Co@N-gC. This laser method operates in normal air, significantly reducing time and energy consumption. The resulting catalyst features smaller, evenly distributed cobalt particles that enhance interaction with the carbon support, leading to improved activity and efficiency in key energy reactions. Our laser-made catalyst, Co-LP-5, exhibited excellent performance over 48 hours, outperforming traditional methods. This breakthrough demonstrates that low-energy laser techniques can create powerful, multifunctional catalysts for clean energy more quickly, cheaply, and sustainably.

    Practical implementation of the research :

    We are working on developing new materials that help produce clean energy in a faster, cheaper, and more eco-friendly way. Usually, scientists use a high-heat process to convert materials called metal-organic frameworks (MOFs) into something called catalysts, which are substances that help speed up important chemical reactions, such as splitting water to produce hydrogen fuel or helping batteries and fuel cells work better.

    However, the traditional method requires a lot of energy, time, and special conditions to work. In the study, we found a much simpler and faster way to make these useful catalysts. Instead of heating the material for a long time, we used a laser to quickly transform the MOF into a new material. We did this in normal air using short pulses of light from a laser, and within seconds, the material changed into a highly active form containing tiny cobalt particles surrounded by nitrogen-rich carbon. This new material works more efficiently and lasts longer than the one made by traditional heating.

    Our method is not only quicker and more energy-efficient, but also easier to scale up for larger use. This laser technique can be used to create advanced materials for fuel cells, batteries, and systems that produce hydrogen from water. These technologies are crucial for clean energy and can help reduce pollution and dependence on fossil fuels.

    The real-world impact of this research is significant. It can make clean energy technologies more affordable and accessible, especially in developing regions with limited energy access. It also supports the shift toward a greener economy by promoting sustainable methods and creating new opportunities in clean energy industries. In the long term, this work contributes to fighting climate change and protecting the environment by helping the world move toward cleaner, safer energy solutions.

    Future Research Plans:

    • Explore using different metal-based MOFs to develop a broader range of catalysts for clean energy applications.
    • Optimise laser processing conditions such as energy, speed, and environment to improve the quality and performance of the final materials.
    • Study the detailed mechanism of how the laser converts MOFs into active catalysts to better understand and control the process.
    • Test the laser-made catalysts in actual energy devices like fuel cells and water-splitting systems to evaluate their real-world performance.
    • Investigate methods to scale up the laser processing technique for larger production while keeping it cost-effective and energy efficient.
    • Expand the application of these materials to other areas such as carbon dioxide reduction, hydrogen storage, or environmental sensing.

     

    Collaborations:

    Prof. Sae Youn Lee, Dongguk University, Republic of Korea.
    Dr. Srinivasan Arthanari, Chungnam National University, Republic of Korea.

     

    Nanosecond laser

    Continue reading →
  • Advancing Next-Gen PEM Fuel Cells: Role of Nanostructured Catalysts May 20, 2025

    Env. Sc. Paper PublishedThe transition to sustainable energy sources has become imperative due to the exhaustion of conventional resources caused by excessive use and their detrimental impact on the environment. Currently, alternative energy sources, such as solar, wind, nuclear, tidal, and geothermal energy, hydro have been introduced. Over the last few decades, focus has shifted to the use of hydrogen energy as a promising alternative to traditional power sources in almost all sectors requiring energy applications.

    However, a major challenge holding back their widespread use is the high cost and limited performance of a key component called the catalyst layer (CL). This layer is responsible for speeding up the chemical reaction that generates electricity, but it typically requires a large amount of platinum, a rare and expensive metal and often has a thick, disordered structure that reduces efficiency.

    This research, titled “Towards Next-Generation proton exchange membrane fuel Cells: The role of nanostructured catalyst layers” led by Dr. Narayanamoorthy Bhuvanendran, Assistant Professor, Department of Environmental Science and Engineering, was published in the Q1 Journal, Chemical Engineering Journal, with an Impact Factor of 13.4. The paper focuses on designing advanced nanostructured catalyst layers that are thinner, more organised, and use much less platinum. These next-generation CLs can help fuel cells perform better, last longer, and become more affordable.

    The study reviews recent progress in this field, highlights innovative methods for creating these new structures, and outlines future directions to improve their practicality and environmental impact. Ultimately, this work aims to bring us closer to clean, efficient, and widely accessible fuel cell technology.

    Fuel cells offer clean energy with zero emissions when using hydrogen, and higher energy efficiency than diesel or gas engines. Among them, Proton Exchange Membrane Fuel Cells (PEMFCs) are one of the most promising technologies. PEMFCs produce only water as a byproduct, making them a clean energy alternative to fossil fuels.

    Abstract:
    Catalyst layer (CL) is the major component of proton exchange membrane fuel cells (PEMFCs) and routinely fabricated by a catalyst ink-based processing method. Such conventional CLs typically confront low activity, unaffordable Pt loading, and severe mass transport issues due to the thick and disordered structure, hampering the widespread commercial application of PEMFCs.

    Engineering of nanostructured CLs with low/ultralow Pt loading, ordered and/or ultrathin CLs, provides a highly promising pathway for overcoming these limitations. For the practical application of the nanostructured CLs in PEMFCs, this review comprehensively summarises and comments on the important research and development of nanostructured CLs over recent years, involving ordered electronic conductor-based CLs, ordered ionomer-based CLs, and ultrathin CLs.

    The reviewed processes include

    (i) analysing the motivation and necessity to design and fabricate nanostructured CLs based on the structure and mass transport process of conventional CLs,
    (ii) scrutinising structure and composition, preparation methods, advantages, as well as
    some feasible strategies for the remaining challenges of various nanostructured CLs in
    detail,
    (iii) the progress of single cell activity and durability of the nanostructured CLs. Finally, some perspectives on remaining challenges and future development of the nanostructured CLs are presented to guide the exploitation for the next-generation of advanced CLs of PEMFCs.

    Practical implementations:

    The practical objective of this study is to facilitate the development of more efficient, cost-effective, and durable proton exchange membrane fuel cells (PEMFCs) through the redesign of the catalyst layer utilising advanced nanostructures. This enhancement has the potential to substantially decrease dependence on costly platinum, reduce production expenses, and enhance the overall performance of fuel cells.

    In terms of societal impact, this research contributes to the transition towards clean and sustainable energy systems, thereby reducing greenhouse gas emissions and air pollution associated with conventional fossil fuels. By making fuel cell technology more accessible and scalable, particularly for transportation and portable power applications, it supports global initiatives to combat climate change and improve energy security for future generations.

    Collaborations:
    Prof. Huaneng Su, Institute for Energy Research, Jiangsu University, Zhenjiang, China.

    Continue reading →