All Management News

  • Classical concert on Annamacharya Sankeertanas June 8, 2022

    TTD Event

    Tallapaka Annamacharya, popularly known as ‘Anamayya’, was a 15th-century saint and the earliest known Indian musician to compose songs called sankeertanas in praise of Lord Venkateswara. His compositions have strongly influenced the structure of Carnatic Music and are still making rounds in various music concerts and performances the world over.

    Having composed countless odes to Sri Tirumala Venkateswara Swamy, Annamacharya is widely regarded as the Pada Kavitaa Pitamaha of Telugu poetry. He was a reputed singer and an eminent poet who gave life to the Telugu song and lyricism by blending the Telugu ‘Andhra Vedam’ for the easy understanding of the common man, with the summary of ‘Sanskrit Vedas’.

    Tirumala Tirupati Devasthanams, also known as TTD, are on an endeavour to preserve the rich heritage of his compositions. They have set music to over 800 compositions of Annamacharya that have amassed wide popularity among the devotees. We are delighted to announce that the following TTD musicians will be offering a beautiful rendition of Annamacharya’s compositions at our university campus:

    Mr M B Loganatha Reddy (Singer)

    Mr Srinivasulu (Keyboard)

    Mr Bujji (Tabla)

    Mr Ramachandraiyya (Shruthi)

    Lend your ears to their soothing and heart-warming performance.

    Date: June 8, 2022

    Time: 4.00 pm to 5.00 pm

    Venue: Auditorium

    Continue reading →

  • Computing Influential nodes in complex networks June 7, 2022

    With its vast applications in the industry, computing influential nodes is becoming a popular research field in recent days. The Department of Computer Science and Engineering is delighted to inform you that the paper, Computing Influential Nodes Using Nearest Neighborhood Trust Value and Pagerank in Complex Networks have been published by Dr Murali Krishna Enduri, Assistant Professor, Dr Satish Anamalamudi, Associate Professor, and the PhD students; Koduru Hazarathaiah, Ms Srilatha Tokala in the Entropy Journal (Q2 Journal), with an impact factor 2.587.

    Abstract

    Influential nodesComputing influential nodes attract many researchers’ attention for spreading information in complex networks. It has vast applications such as viral marketing, social leaders, rumour control, and opinion monitoring. The information spreading ability of influential nodes is more compared with other nodes in the network. Several researchers proposed centrality measures to compute the influential nodes in the complex network, such as degree, betweenness, closeness, semi-local centralities, PageRank, etc. These centrality methods are defined based on the local and/or global information of nodes in the network. However, due to the high time complexity, centrality measures based on the global information of nodes have become unsuitable for large-scale networks. Very few centrality measures exist that are based on the attributes between nodes and the structure of the network. We propose the Nearest Neighbourhood Trust PageRank (NTPR) based on the structural attributes of neighbours and nearest neighbours of nodes. We define the measure based on the degree ratio, the similarity between nodes, the trust value of neighbours, and the nearest neighbours.

    Explanation of the research

    The research computes the influential nodes on the various real-world networks by using the proposed centrality method NTPR. The researchers find the maximum influence by using influential nodes with SIR and independent cascade methods. They also compare the maximum influence of our centrality measure with the existing basic centrality measures.

    Social implications

    Viral Marketing is a business strategy that uses existing social networks to promote products. The influential nodes in complex networks can be found using the centrality measure and can be used as the seed nodes for promoting products in the social networks. A rumour is a statement being said without knowing if it is true or not. The rumours can be easily controlled by discovering influential nodes. The researchers look forward to finding a centrality measure to detect the influential nodes efficiently.

    Continue reading →
  • The potential applications of NdNiO3 June 7, 2022

    Research at the Department of Physics is currently exploring the potential applications of NdNiO3. Recently, Professor Ranjit Thapa, and his Ph D student, Mr Deepak S Gavali published the paper, Low-Temperature Spin-Canted Magnetism and Bipolaron Freezing Electrical Transition in Potential Electron Field Emitter NdNiO3 in the journal ACS Applied Electronic Materials, with an Impact Factor of 3.314. This work is done in collaboration with the Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, Odisha, India.

    About the research

    NdNiO3.In this work, NdNiO3 nanoparticles are synthesized by sol-gel auto-combustion techniques, and its primary characterization related to structural and surface morphological analysis is carried out by X-Ray Diffraction (XRD), Fourier Transforms Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), and Transmission Electron Microscopy (TEM) techniques. The research is focused on magnetic phase transition below Curie temperature (TN) ∼176 K, and the magnetic susceptibility indicates a weak antiferromagnetic ordering at low temperature. Different ac conduction mechanisms, that is, Correlated Barrier Hopping (CBH), Continuous-Time Random Walk (CTRW) conduction model, and Non-overlapping Small Polaron Tunneling (NSPT), are introduced to interpret its electrical transport behavior near, above, and below TMI ∼178 K. Using first principles and Density of States (DOS) calculation, the researchers have characterized the electronic and magnetic ground state of NdNiO3 at room temperature. It exposed the overlapping of conduction and valence band at room temperature, and the degree of hybridization between Ni 3d and O 2p is very high compared to Nd 5d states. The work function is also calculated for a few-layer NdNiO3 to estimate the field enhancement factor (β), which plays a crucial role in the practical application of a field emitter.

    Practical implications

    The additional novelty of the present work is to explore the potential application of NdNiO3 as an efficient field emitter and controlled electron/X-ray sources in a flat panel display, microwave vacuum electronic devices, electron microscopy/ lithography, and so forth. To eject conducting electrons from the metal/semiconducting surface by a quantum mechanical tunneling process, sufficient energy is required in terms of the applied electric field (∼106 to 107 V/cm) to overcome the potential barrier at the vacuum−metal interface. The potential difference between the Fermi level (Ef ) of the metal surface to vacuum is known as the work function (Φ). It depends on material characteristics and plays an essential role in field enhancement capability. The primary requirement for efficient field emitters is high aspect ratios (i.e., field enhancement factor), inferior turn-in field, low work, function, etc. Researchers have examined various classes of materials for efficient field emitter electrodes, such as (i) carbonaceous materials like graphene and carbon nanotube, (ii) various 1D and 2D metal oxide and transition metal dichalcogenides like ZnO, MnO2, In2O3, WS2, WSe2, MoS2, PdSe2, etc., (iii) inorganic semiconductors like SiC and Si, and (iv) wide band gap semiconducting compounds GaN, AIN, and so on. The field emission properties of rare earth nickelates (RNiO3; R = La, Gd, Nd, Sm, etc.) with an exciting room temperature metallic nature have not been examined.

    Continue reading →
  • Applying the Pareto principle in disordered systems June 6, 2022

    soumyajyoti biswas

    The Department of Physics is glad to announce that Dr Soumyajyoti Biswas, Assistant Professor, has published a paper titled ” Near universal values of social inequality indices in self-organized critical models” in the journal Physica A: Statistical Mechanics and its Applications having an impact factor of 3.263. This research was done in collaboration with Prof S S Manna of S N Bose National Center for Basic Sciences and Prof B K Chakrabarti of Saha Institute of Nuclear Physics.

    It is well known that wealth invariably accumulates only in a few hands while a majority of the world continues to remain poor. In economics, it is quantified in Pareto’s 80-20 law (20% of people possess 80% of wealth) or ‘The Law of the Vital Few’. This research reveals that the implication of this law goes far beyond the socio-economic systems. It is also a crucial indicator of the onset of critical phenomena in a wide class of physical systems.

    It has been observed that in the dynamics of disordered systems, such as fracture and breakdown of solids, slowly increasing the external force produces acoustic emissions (crackling noise), the sizes of which follow Pareto-like behaviour (most noises are weak, only a few are strong that results in the breakdown). Quantifications of these “inequalities” in these physical systems reveal some universal characteristics in a wide class of models, known as self-organized critical systems.

    The main implication of this observation lies in predicting catastrophic breakdown in disordered systems. Applications of these inequality measures, which are traditionally in the domain of social sciences, have proved to be immensely useful in identifying the approaching breakdown points in the models of disordered systems. Given that the methods are applicable to a wide variety of models, the 80-20 law has the potential for a wide range of applications. Dr Biswas and his PhD student Diksha are currently working with a team in Spain on experimental data and studying these inequalities in real systems.

    Continue reading →
  • SRM-AP secures patent for innovative engine piston rings June 6, 2022

    Financial Express – May 24

    Hans India – May 18

    Continue reading →
  • Student of SRM University AP gets Admissions to World’s Top Universities June 6, 2022

    Financial Express – May 17

    Hindu – May 10

    Eenadu – May 03

    Continue reading →
  • SRM University to enhance research collaboration June 6, 2022

    Hans India – May 08



    Pioneer – May 08

    Continue reading →
  • SRM University to enhance research collaboration June 6, 2022

    Pioneer – May 08


    Hans India – May 08

    Continue reading →
  • SRM offers MTech with fee waiver June 6, 2022

    Financial Express – May 09

    Deccan Chronicle – May 05

    Hindu – May 04

    Indian Express – May 03

    Continue reading →
  • Renewing a battle that is worth fighting for June 4, 2022

    World environment dayImagine a motto having the same relevance and emergency even after 50 years of its inception! The slogan for the Stockholm Conference, #OnlyOneEarth of 1972, can relate. The theme is as pertinent as ever, with a lot more amplified concerns. This World Environment Day, revisit the actuality that Mother Earth is still the only liveable planet we have. Nature conservation is that battle we plot against ourselves only to win back what we destroyed.

    The reckless devastations can only be nullified through transformative actions which can reset the balance between humanity and nature. Getting out of the denial stage and acting accordingly is the only way to preserve nature for the next generation. A greener, cleaner, and sustainable tomorrow will always be a matter of urgency with the escalating environmental issues.

    The Department of Student Affairs is celebrating World Environment Day to spread hopes and action plans for protecting what we have in order to restore what we lost. The celebration aspires to emphasise and accelerate the thoughts on the predicament situation we are in. As part of the event, there will also be an awareness rally to foster the essence of the message.

    Date: June 05, 2022

    Time: 08.00 AM to 10.00 AM IST

    Come along and renew the pledge to embrace mother nature!

    Continue reading →