Assistant Professor

Dr J P Raja Pandiyan 

Department of Chemistry


  1. Surface-enhanced Raman spectroscopy
  2. Nanomaterials and nanochemistry
  3. Microfluidics
  4. Spectroelectrochemistry



PSG College, Bharathiar University,


University of Madras,


National Chung Hsing University,


  • 10/2017 - 03/2021 - Senior Postdoctoral Scientist - University of Leipzig, Germany
  • 07/2016 - 08/2017 - Senior Postdoctoral Scientist - University of Alabama at Birmingham, USA
  • 09/2014 - 06/2016 - Postdoctoral Researcher – Xiamen University, China

Research Interest

  • Development of plasmonic nanostructures (Ag, Au) for surface-enhanced Raman spectroscopy (SERS)
  • Application of SERS in food science, environmental science, and biology
  • Development of microfluidic devices for SERS applications

Awards & Fellowships

  • 2017 - Second prize for exceptional performance in the 14th Annual Postdoctoral day - The University of Alabama at Birmingham, Alabama, USA.


  • Life-Fellow at Indian Chemical Society, Kolkata, India (Founded 1924)
  • Life-Fellow at Chemical Research Society of India, IISC Bengaluru, India

List of Publications

  • Ajinkya Anjikar, Priyanka Jadhav, Arti Hole, Rajapandian Paneerselvam, Arvind Ingle, Tatsuyuki Yamamoto, Hemanth Noothalapati, and Murali Krishna C, Removal of hemolysis interference in serum Raman spectroscopy by multivariate curve resolution analysis for accurate classification of oral cancers, Sens. Diagn., 2023, Advance Article (Impact factor - 4.35)
  • Jayasree Kumar, Balamurugan Devadas,* and Rajapandiyan Panneerselvam,* Raman Spectroscopy for Hydrogen Production, (Book Chapter), ACS Symposium Series, 2023
  • Anish Das, Sebastian Fehse, Matthias Polack, Rajapandiyan Panneerselvam, and Detlev Belder* Surface-Enhanced Raman Spectroscopic Probing in Digital Microfluidics through a Microspray Hole, Analytical Chemistry, Just Accepted, (Impact factor - 8.0)
  • Rajandiyan Panneerselvam,* Selvaraju Kanagarajan, and Arunima Jinachandran, Surface-enhanced Raman spectroscopy for food quality and safety monitoring, (Book Chapter), Elsevier, November 1, 2022.
  • Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, Nat. Rev. Mater.,1, 16021, (2016); (Impact factor -74.6).
  • Core-shell nanoparticle-enhanced Raman spectroscopy. J.-F. Li, Y.-J. Zhang, S.-Y. Ding, R. Panneerselvam, and Z.-Q. Tian, Chem. Rev., 117, 5002–5069, (2017); (Impact factor -54.3).
  • Surface-enhanced Raman spectroscopy: bottlenecks and future directions. R. Panneerselvam, G.-K. Liu, Y.-H. Wang, J.-Y. Liu, S.-Y. Ding, J.-F. Li, D.-Y. Wu and Z.-Q. Tian, Chem. Commun., 54, 10–25, (2018); (Impact factor -5.9).
  • Shell-isolated nanoparticle-enhanced Raman spectroscopy at single-crystal electrode surfaces. J.-C. Dong, R. Panneerselvam, Y. Lin, X.-D. Tian and J.-F. Li, Adv. Opt. Mater. 4, 1144–1158, (2016); (Impact factor -8.2).
  • “Smart” Ag nanostructures for plasmon-enhanced spectroscopies. C.-Y. Li, M. Meng, S.-C. Huang, L. Li, S.-R. Huang, S. Chen, L.-Y. Meng, R. Panneerselvam, S.-J. Zhang, B. Ren, Z.-L. Yang, J.-F. Li, and Z.-Q. Tian, J. Am. Chem. Soc., 137, 13784–13787 (2015); (Impact factor -14.6).
  • Sensitive cylindrical SERS substrate array for rapid microanalysis of nucleobases. R. Panneerselvam, and J. Yang, Anal. Chem., 84, 10277–10282, (2012); (Impact factor -6.7).
  • Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?. Rajapandiyan Panneerselvam, Detlev Belder, Hemanth Noothalapati, Anish Das, Eva-Maria Hohn, and Hasan Sadat. Lab on a Chip, (2022).
  • Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Hai-Long Wang, En-Ming You, Rajapandiyan Panneerselvam, Song-Yuan Ding & Zhong-Qun Tian. Light: Science & Applications, (2021).
  • Promise of nano-carbon to the next generation sustainable agriculture. Mahima Chandel, Kamaljit Kaur, Bandana Kumari Sahu,Sandeep Sharma, Rajapandiyan Panneerselvam, Vijayakumar Shanmugam. Carbon, (2021).
  • A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes. Benjamin K.;, Panneerselvam, R.; David, G.; Belder, D. Anal. Bioanal. Chem. 412, 267–277, (2020).
  • Raman spectroscopic detection in continuous microflow using a chip-integrated silver electrode as an electrically regenerable surface-enhanced Raman spectroscopy substrate. Höhn, E.-M.; Panneerselvam, R.; Das, A.; Belder, D. Anal. Chem. 91 (15), 9844–9851 (2019)
  • A rapid and simple chemical method for the preparation of Ag colloids for surface-enhanced Raman spectroscopy using the Ag mirror reaction. Panneerselvam, R.; Xiao, L.; Waites, K. B.; Atkinson, T. P.; Dluhy, R. A Vib. Spectrosc. 98. (2018)
  • Quantitative detection using two-dimension shell-isolated nanoparticle film. J.-L. Yang, Z.-W. Yang, Y.-J. Zhang, H. Ren, H. Zhang, Q.-C. Xu, R. Panneerselvam, K. Sivashanmugan, J.-F. Li, and Z.-Q. Tian, J. Raman Spectrosc., 48, 919–924, (2017).
  • Microwave-assisted synthesis of highly dispersed PtCu nanoparticles on three-dimensional nitrogen-doped graphene networks with remarkably enhanced methanol electrooxidation. X. Peng, D. Chen, X. Yang, D. Wang, M. Li, C.-C. Tseng, R. Panneerselvam, X. Wang, W. Hu, J. Tian, and Y. Zhao, ACS Appl. Mater. Interfaces, 8, 33673–33680 (2016).
  • Theoretical study of normal Raman spectra and SERS of benzyl chloride and benzyl radical on silver electrodes. Y.-L. Chen, R. Panneerselvam, D.-Y. Wu and Z.-Q. Tian, J. Raman Spectrosc., 48, 53–63, (2017).
  • Potential dependent thiocyanate adsorption on gold electrodes: a comparison study between SERS and SHINERS. G. Cabello, X.-J. Chen, R. Panneerselvam, and Z.-Q. Tian, J. Raman Spectrosc. 47, 1207–1212, (2016)
  • Stable 16.2% efficient surface plasmon-enhanced graphene/GaAs heterostructure solar cell. S.-S. Lin, Z.-Q. Wu, X.-Q. Li, Y.-J. Zhang, S.-J. Zhang, P. Wang, R. Panneerselvam, and J.-F. Li Adv. Energy Mater., 6, 1600822, (2016).
  • Probing the electronic structure of heterogeneous metal interfaces by transition metal-shell gold nanoparticle-enhanced Raman spectroscopy. Y.-J. Zhang, S.-B. Li, S. Duan, B.-A. Lu, J. Yang, R. Panneerselvam, C.-Y. Li, P.-P. Fang, Z.-Y. Zhou, D. L. Phillips, J.-F. Li, and Z.-Q. Tian, J. Phys. Chem. C, 120, 20684–20691, (2016).
  • Self-assembly of subwavelength nanostructures with symmetry breaking in solution. X.-D. Tian, S. Chen, Y.-J. Zhang, J.-C. Dong, R. Panneerselvam, Y. Zhang, Z.-L. Yang, J.-F. Li, and Z.-Q. Tian, Nanoscale, 8, 2951–2959, (2016).
  • A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. Y. Zhao, Y.-J. Zhang, J.-H. Meng, S. Chen, R. Panneerselvam, C.-Y. Li, S. B. Jamali, X. Li, Z.-L. Yang, J.-F. Li, and Z.-Q. Tian, J. Raman Spectrosc., 47, 662–667, (2016).
  • Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces. B.-Y. Wen, X. Jin, Y. Li, Y.-H. Wang, C.-Y. Li, M.-M. Liang, R. Panneerselvam, Q.-C. Xu, D.-Y. Wu, Z.-L. Yang, J.-F. Li, and Z.-Q. Tian, Analyst, 141, 3925–3925, (2016).
  • In-situ electrochemical shell-isolated Ag nanoparticles-enhanced Raman spectroscopy study of adenine adsorption on smooth Ag electrodes. C.-Y. Li, S.-Y. Chen, Y.-L. Zheng, S.-P. Chen, R. Panneerselvam, S. Chen, Q.-C. Xu, Y.-X. Chen, Z.L. Yang, D.-Y. Wu, J.-F. Li, and Z.-Q. Tian, Electrochim. Acta, 199, 388–393,(2016).
  • Electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J.-F. Li, Y.-J. Zhang, A. V. Rudnev, J. R. Anema, S.-B. Li, W.-J. Hong, R. Panneerselvam, J. Lipkowski, T. Wandlowski, and Z.-Q. Tian, J. Am. Chem. Soc., 137, 2400–2408, (2015).
  • In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. C.-Y. Li, J.-C. Dong, X. Jin, S. Chen, R. Panneerselvam, A. V. Rudnev, Z.-L. Yang, J.-F. Li, T. Wandlowski, and Z.-Q. Tian, J. Am. Chem. Soc.,137, 7648–7651, (2015).
  • Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array. R. Panneerselvam, W.-L. Tang and J. Yang, Food Control, 56, 155–160, (2015).
  • Large scale synthesis of pinhole-free shell-isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications. W. Zhang, J.-C. Dong, C.-Y. Li, S. Chen, C. Zhan, R. Panneerselvam, Z.-L. Yang, J.-F. Li, and Y.L. Zhou, J. Raman Spectrosc., 46, 1200–1204, (2015).
  • Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. R. Panneerselvam, and J. Yang, J. Raman Spectrosc., 45, 574–580, (2014).
  • Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) of Electrode Surfaces, Volume 17, 2017, Nanopatterned and nanoparticle modified electrodes, Li, J.-F., Panneerselvam, R. & Tian, Z.-Q. Wiley. Editors: Richard C. Alkire (University of Illinois at Urbana-Champaign, the USA), Philip N. Bartlett (University of Southampton, UK), and Jacek Lipkowski (University of Guelph, Canada).
  • Shell-isolated nanoparticle-enhanced Raman spectroscopy, Recent Developments In Plasmon-Supported Raman Spectroscopy: 45 Years of Enhanced Raman Signals (2017). World Scientific. Li, J.-F., Panneerselvam, R. & Tian, Z.-Q. Editors: Katrin Kneipp (Technical University of Denmark), Yukihiro Ozaki (Kwansei Gakuin University, Japan), and Zhong-Qun Tian (Xiamen University, China)