The Department of Mechanical Engineering concluded its 5-day intense Faculty Development Programme on Smart Manufacturing and Industry 4.0 organised with the objective of highlighting Smart Manufacturing to boost efficiency and sustainability, fostering collaboration among researchers, academicians, and industry experts and improving manufacturing practices and sustainability through innovation.
The FDP kick-started with a plenary lecture on Smart Manufacturing/Industry 4.0, followed by interactive sessions led by eminent speakers. The FDP witnessed industrial and academic stalwarts such as Prof. Ramesh Babu, IIT Chennai; Mr Amit Baddi, Samprama Digitech, Pune; Dr Rishi Relan, Siemens, Delhi; Prof. Kaushal Desai, IIT Jodhpur to name a few. The resource persons, experts in their specific realms, primed over 100+ participants from both in and around the varsity.
The participants had the opportunity to learn about big data analytics and machine-to-machine communication, real-time data collection and processing using IoT, and seamless integration of manufacturing system components. The FDP encouraged extensive discussions and knowledge sharing sessions, bestowing a pivotal opportunity for participants, educators and industry practitioners to immerse themselves in the future of manufacturing.
The FDP also offered the participants significant opportunities to contribute to the evolving manufacturing landscape, ultimately enhancing productivity, efficiency, and sustainability in their respective fields. Academic colloquiums such as these prove to be significant in readying the next cohort of engineers and technology enthusiasts to tackle the problems of tomorrow.
Continue reading →
In an inspiring collaboration, Prof. G S Vinod Kumar and Prof. Sheela Singh from the Department of Mechanical Engineering, Prof. Ranjit Thapa from the Department of Physics, and Dr Rajapandiyan Panneerselvam from the Department of Chemistry at SRM University – AP, along with PhD scholars Ms Harsha K and Ms Arunima J, have co-authored a compelling paper titled “Innovative Approaches to Enhancing the Tarnish Resistance of Silver Alloys.” This groundbreaking research focuses on developing new silver alloys that resist tarnishing, enhancing durability and aesthetic appeal for applications in the jewellery industry. Together, they are paving the way for innovative solutions that blend science with artistry.
Abstract
Silver and its alloys undergo tarnishing with time, which is a black stain on the surface due to the formation of Ag2S. Developing a tarnish resistant Ag alloy was attempted by alloying Ag with elements that form a passive oxide layer on the surface. Germanium is proven to provide better tarnish resistance to sterling silver alloy (92.5wt.% pure) which is available under the trade name of Argentium©. The present work investigates the tarnish resistance behaviour of sterling silver alloy (92.5wt.% pure) containing various additions of Copper, Zinc, Germanium, Aluminium, Beryllium, Titanium, Zirconium, and Magnesium. The alloys were prepared by melting and casting route, followed by Passivation Heat Treatment (PHT) to create a stable and continuous oxide layer. The temperature for PHT was optimized using thermogravimetry analysis (TGA) of the alloys prepared. An accelerated tarnish test was carried out to investigate the tarnishing behaviour of alloy samples obtained before and after PHT. The samples were characterized using XRD, SEM-EDX, TG-DSC, micro-Raman Spectroscopy, and XPS. The change in reflectance of the samples after the tarnish test is determined using UV-visible reflectance spectroscopy. The mechanism behind the tarnish resistance was derived using Density Functional Theory (DFT) by comparing sulphur (S2) and Oxygen (O2) adsorption energies (BE) of the alloying elements.
Explanation of the Research in layperson’s terms
Age-old silver pieces are found in different colours ranging from light yellow(silver Jewellery pieces after a few weeks of usage) to black(archaeological silver pieces). They look different in terms of the metallic white colour and lustrous appearance from fresh silver. This demeans silver and thus affects its market. The major cause of the staining of silver is the interaction of individual silver particles with some elements found common in the atmosphere. We work on the prevention of this staining of silver. For the study, silver is incorporated with other elements which makes silver less interacting with staining elements in the atmosphere. These additional elements create a layer over silver so that it is protected. The appropriate elements are identified by using modelling using computer software. After obtaining appropriate elements, the experimental trials are also done with the same elements until stainless silver is obtained. Then, what happens to the added elements inside silver is also studied by using modern microscopic technics.
Practical/Social Implications of the Research
The major application of the invention is in the jewellery industry. The problem of tarnishing is an age-old threat in jewellery making. The alloys we proposed could be used to make quality silver jewellery/articles that can sustain the colour and lustre for a longer period. This will stop the hesitation from jewellery designers and industries to try intricate designs in silver and find a better market for them. The alloys based on the proposed composition show good grain refinement and thus high hardness. This strengthens the soft silver and improves the range of its applications from low hardness articles to high. The alloys based on the proposed composition have high tensile strength. They deform plastically for a wide range of stress values and will not break easily.
Collaborations:
Waman Hari Pethe & Sons Jewellery
Future Research Plans:
1. Corrosion studies of silver alloys to understand the behaviour in solutions having compositions similar to that of sweat.
2. Study of mechanical properties of silver alloys to develop workable alloys of sterling silver which could be used for jewellery manufacturing
3. Identification of elements having better oxide layer formation when alloyed with silver, by using computational techniques and experimental studies of their properties.
Link to the article:
https://www.sciencedirect.com/science/article/pii/S2238785424024633
In a recent publication in the prestigious Journal Metals and Materials International, Dr Maheshwar Dwivedy, Associate Professor in the Department of Mechanical Engineering and Dr B Prasanna Nagasai, Post-Doctoral Researcher, delve into the intricate relationship between welding processes and the resulting microstructure and mechanical properties of Duplex Stainless-Steel parts fabricated through Wire Arc Additive Manufacturing.
The research paper, aptly titled “Influence of Welding Processes on the Microstructure and Mechanical Properties of Duplex Stainless-Steel Parts Fabricated by Wire Arc Additive Manufacturing,” illuminates the crucial factors that influence the quality and performance of components produced using this innovative manufacturing technique.
This collaborative effort not only enriches the academic community but also holds promising implications for the advancement of additive manufacturing technologies, particularly in the realm of Duplex Stainless-Steel fabrication. By unravelling the impact of different welding processes on the microstructural characteristics and mechanical behaviour of such components, the researchers offer valuable insights that can potentially enhance the efficiency and reliability of the manufacturing process.
The publication of this paper signifies a significant milestone in the ongoing exploration of material science and additive manufacturing techniques, highlighting the dedication and expertise of Dr Maheshwar Dwivedy and Dr B Prasanna Nagasai in pushing the boundaries of knowledge and innovation in the field.
Abstract
Direct energy deposition (DED) is an advanced additive manufacturing (AM) technique for producing large metal components in structural engineering. Its cost-effectiveness and high deposition rates make it suitable for creating substantial and complex parts. However, the mechanical and microstructural properties of these components can be influenced by the varying heat input and repeated thermal treatments associated with different welding procedures used during the deposition process. This study employed gas metal arc welding (GMAW) and cold metal transfer (CMT) arc welding techniques to fabricate cylindrical components from 2209 duplex stainless steel (DSS).
The research investigated the impact of these welding methods on the microstructure and mechanical properties of the 2209 DSS cylinders. The intricate thermal cycles and cooling rates inherent in the DED process significantly influenced the primary phase balance, ideally comprising 50% austenite and 50% ferrite. In components processed using GMAW, σ-phase formation was noted at the grain boundaries. Additionally, a slower cooling rate and extended time for solid-state phase transformations led to an increase in austenite content from the bottom to the top of the component. The cylinder fabricated using the CMT process exhibited fine austenite morphologies and a higher ferrite content compared to the GMW-processed cylinder.
Furthermore, the cylinder produced using the CMT process showed consistent properties across the building direction, unlike the components manufactured with the GMW process. In terms of tensile properties, hardness, and impact toughness, the cylinder produced using the CMT technique outperformed the one made with the GMW process.
Research in Layperson’s Terms
Over the last ten years, a new way of making things called additive manufacturing (AM) has become really popular, especially in industries like aerospace, oil, and gas. This technology builds parts layer by layer, which is a big change from traditional methods that often involve cutting away material to shape a part. One specific method of AM, called Directed Energy Deposition (DED), is particularly good at creating complex metal parts quickly and efficiently. A special kind of stainless steel called duplex stainless steel (DSS) is made of two types of microstructures, ferrite and austenite, which give it great strength and resistance to corrosion. This makes it ideal for use in demanding environments like the oil and gas industry.
A technique within DED called Wire Arc Additive Manufacturing (WAAM) is becoming a popular way to make large, strong metal parts like pipes and storage tanks. WAAM uses the same equipment as welding and can build parts by melting wire with an electric arc. It’s faster and cheaper than other AM methods. However, the process can change the structure of the metal, which affects its properties. For example, too much heat can reduce the amount of ferrite in the metal, making it less strong.
Researchers have been studying how different methods of WAAM, including ones that use less heat, affect the metal’s structure and properties. They’ve found that controlling the heat can lead to better mechanical properties, like higher strength and toughness. They’ve also looked at new technologies like digital twins (virtual models of the manufacturing process) to improve the stability and consistency of the process. In this study, researchers focused on making cylindrical parts from 2209 DSS using two different welding processes within WAAM: Gas Metal Arc Welding (GMAW) and Cold Metal Transfer (CMT).
They studied how these processes affected the metal’s structure and properties, like tensile strength, hardness, and toughness. The goal was to understand which process produces the best quality parts for industrial use. In summary, the research aims to improve the manufacturing of strong, corrosion-resistant metal parts using advanced AM techniques, making them more efficient and cost-effective for industries that need durable components.
Practical Implementation or the Social Implications Associated
The practical implementation of this research can revolutionise industrial manufacturing, especially in sectors like aerospace, oil and gas, automotive, and marine applications. Using WAAM with DSS, industries can produce lightweight, high-strength parts that withstand extreme environments, significantly improving efficiency and cost-effectiveness. WAAM’s ability to quickly produce customized and high-quality components also makes it ideal for rapid prototyping and repair, reducing lead times and overall production costs. Furthermore, WAAM is a more sustainable manufacturing method, generating less waste and utilizing recycled materials, contributing to eco-friendly production practices. The social implications are substantial, including the creation of new job opportunities and the need for specialized training programs to equip workers with advanced skills.
The economic impact is also notable, as WAAM enhances the competitiveness of companies, driving economic growth in high-tech industries. Innovation is fostered through advancements in manufacturing processes and materials science, leading to improved product performance and longevity, particularly in safety-critical applications. Additionally, the environmental benefits of reduced waste and potential use of recycled materials align with global sustainability goals. Overall, the adoption of WAAM can democratize the manufacturing landscape, making advanced technologies more accessible and affordable for smaller companies and startups, thereby fostering a more inclusive and innovative industrial environment.
Future Research Plans:
The upcoming work will focus on creating Functionally Graded Materials (FGMs) using Wire Arc Additive Manufacturing (WAAM) by merging various metals, including nickel, stainless steel, mild steel, Inconel 718, and AISI 410 MSS. The goal is to optimise material interfaces, refine deposition processes, and ensure structural integrity for high-performance applications.
In a groundbreaking initiative, the Directorate of IR & HS, along with the Department of Mechanical Engineering and Electrical and Electronics Engineering, successfully hosted the “Sakura Sangam: Indo Japan Joint Workshop,” a two-day virtual event held on July 29 and 30, 2024. This workshop, organised in collaboration with Toyo University, Japan and supported by SRM Global Consulting, aimed to foster academic collaboration and cultural exchange between India and Japan.
During the first day, participants delved into key subjects within Mechanical, Electrical, and Electronics engineering, engaging in dynamic sessions that facilitated knowledge exchange and exploration of the latest advancements in these critical fields. The workshop provided a platform for students and professionals alike to enhance their understanding and contribute to ongoing discussions about innovation and technology.
The second day of the workshop was particularly enriching. It featured talks and seminars highlighting the rich cultural heritage of both nations. Attendees had the unique opportunity to gain a deeper appreciation for the traditions and customs that define the Indo-Japanese relationship. Vice Chancellor Dr Manoj K. Arora explained the meaning of ‘Sakura Sangam.’ He noted that “Sakura” refers to cherry blossoms, which are highly cherished in Japanese culture and symbolise the beauty and fleeting nature of life. ‘Sangam’ means ‘coming together’ in Sanskrit. This introduction set the stage for the workshop’s focus on bringing people together and sharing cultures.
Professor discussed India’s reputation as an IT hub and Japan’s renowned manufacturing expertise. He suggested that by combining these strengths, we could share knowledge and strengthen our bonds. The professor then officially started the workshop with a brief introduction, outlining what we will cover over the next two days.
Dr P Vivekananda Shanmuganathan provided a detailed brief on the research activities at SRMAP, with a particular focus on Mechanical Engineering. He highlighted some of the prominent PhD scholars and their ongoing research projects, showcasing their contributions to advanced topics such as innovative manufacturing processes and robotics. This presentation underscored the university’s dedication to cutting-edge research and its role in advancing the field through the efforts of its talented scholars.
Dr Vitalram Rayankula presented his research on Inverse Kinematics, focusing on the “Two Degree of Freedom Manipulator,” a robotic arm with two independent movements. He discussed the challenges of motion planning, particularly when dealing with line-type obstacles. Dr. Rayankula compared scenarios where the manipulator encounters obstacles without collision to those where collisions occur, highlighting the importance of precise calculations and control algorithms for safe robotic operation.
Dr Kiran Kumar discussed electric vehicles (EVs) and their challenges compared to internal combustion engine (ICE) vehicles. He highlighted issues such as the efficiency of ICE components, the longer recharge time for EVs, and the need for additional lead-acid batteries to match the energy density of gasoline. Dr. Kumar emphasized the limitations of current battery technology, which impact the range, weight, and overall efficiency of EVs, while also noting the environmental benefits they offer.
Prof. Shinobu Yamaguchi explored Japan’s changing perspectives regarding India, emphasising the importance of mutual cultural understanding in today’s globalised world. She highlighted how Japan’s view of India has evolved significantly over time.
In addition to technical topics, the workshop also included career-oriented sessions designed to equip students with insights into the professional landscape. Industry experts provided guidance on internships, job prospects, and the latest trends influencing both the Japanese and Indian job markets.
The “Sakura Sangam” workshop proved to be a resounding success, fostering both academic and cultural ties and paving the way for future collaborations between educational institutions in India and Japan.
Dr M Sheikh Mohamed shared insights from his 14-year journey in Japan, focusing on both challenges and growth opportunities.
● Academic Background: Originally from Chennai, Dr. Mohamed completed his B.Sc., M.Sc., and M.Phil. in Biotechnology before moving to Japan.
● Language Challenges: He emphasised the complexity of learning Japanese, especially the kanji script, which can be daunting for newcomers.
● Cultural Adaptation: Dr. Mohamed discussed the importance of mutual respect and understanding in Japan, noting that being polite and helpful can go a long way in overcoming cultural barriers.
● Time Management: He admired the punctuality ingrained in Japanese society, where trains and trams run with remarkable precision.
● Earthquake Preparedness: Recounting an earthquake experience, he observed the calm and orderly manner in which people evacuated buildings, reflecting the nation’s preparedness and resilience.
Thamtoro Elias Dillan, Department of Mechanical Engineering, International Student from Indonesia, provided a detailed account of the key challenges and experiences faced by international students in Japan:
1. Language Barrier: The difficulty of mastering Japanese can be a significant hurdle for international students, impacting daily life and academic success.
2. Student Life: He highlighted the differences in student life between Japan and his home country, including the structure of academic programs and extracurricular activities.
3. Cost of Living: He discussed the relatively high cost of living in Japan, including accommodation, food, and transportation, and offered tips on managing expenses.
4. Location: The choice of university location can greatly affect the student experience, with major cities offering more opportunities but also higher living costs.
5. Help & Support: He stressed the importance of seeking help and support from university resources and local communities to navigate the challenges of living abroad.
Sankar San and Mr. Masahiro Koizumi, Senior Operating Officer of Forum Engineering and Managing Director of Cognavi India, discussed the evolving landscape of educational and career opportunities between Japan and India, focusing on the following aspects:
1. Opportunities in India for Japanese Students: They highlighted the growing interest among Japanese students in India’s IT and engineering sectors, offering diverse opportunities for learning and career growth.
2. Opportunities in Japan for Indian Students: They noted that Japan offers unique opportunities for Indian students, particularly in fields like robotics, engineering, and business management.
3. Identified Gaps: They discussed the gaps in mutual understanding and the challenges students face in adapting to different educational and cultural environments.
4. Changing Trends: They emphasised how initiatives like exchange programs and collaborative projects are bridging these gaps, fostering greater understanding and collaboration.
Sankar San and Jotish San detailed SRM’s strategic initiatives to integrate Japanese language and culture into their curriculum:
● Curriculum Integration: SRM AP has introduced Japanese language courses from the first year, aiming to equip students with the language skills needed for internships and job placements in Japan.
● Destination Japan Program: This program offers students opportunities to experience Japanese culture and work environments, enhancing their global competence.
● Internship and Placement Opportunities: They highlighted partnerships with Japanese companies, providing internships and placements for students, which can be pivotal for career development.
● SRM Group’s Vision: They concluded by sharing SRM’s broader vision of fostering international collaboration and preparing students for a globalized job market.
Ms. Aditi Jain, Director of International Relations and Higher Studies, has eloquently addressed the concept of internationalization and its potential benefits for students from both nations. She highlighted the invaluable partnerships at SRM AP, which foster cross-cultural exchanges and enhance academic collaboration. In her words, “Internationalization not only broadens academic horizons but also cultivates a deeper understanding and appreciation of diverse cultures, preparing students for a globalised world.” These initiatives are not just about enhancing educational experiences; they also empower students to develop a global perspective, essential for succeeding in today’s interconnected environment.
Continue reading →Dr Maheshwar Dwivedy, Associate Dean of Practice School, and Associate Professor, at the Department of Mechanical Engineering, SRM University-AP in collaboration with his post-doctoral scholar, Dr B Prasanna Nagasai, have joined forces to combine artificial intelligence with Cold Metal Transfer (CMT) Technology. Their research paper, “Cold Metal Transfer Technology – A Review of Recent Research Developments,” featured in the Q1 journal, Results in Engineering promises to make a significant impact on automobile, aerospace, oil and gas manufacturing industries, and that’s not all the research will also generate employment opportunities, and empower engineers to deliver enhanced services.
Abstract:
Cold Metal Transfer (CMT) technology has emerged as a promising welding technique, offering numerous advantages such as reduced heat input, minimal spatter, and enhanced control over the welding process. This paper provides a comprehensive review of recent research developments in CMT technology, focusing on its history, variants, recent advancements, and future perspectives. Initially, the paper traces the historical development of CMT welding, highlighting its evolution and the introduction of various CMT variants with distinct characteristics and applications. Recent studies have focused on optimising CMT process parameters to improve weld quality and productivity, leading to advancements in parameter control, arc stability, and wire-feeding mechanisms. Additionally, research has explored the microstructural evolution and mechanical properties of CMT-welded joints for both similar and dissimilar metals, providing insights into material compatibility, joint design, and performance under various conditions. Specific applications such as Laser-CMT hybrid welding, CMT cladding, CMT wire arc additive manufacturing, and CMT welding for repair across various materials are examined, demonstrating the versatility of CMT technology. This review also addresses the challenges and methodologies for defect reduction in CMT welding, along with recommendations for best practices. Furthermore, the paper discusses the integration of artificial intelligence in CMT welding, exploring opportunities for enhanced weld quality, economic, and social implications, and future research directions.
Practical and Social Implications:
The practical implementation of this research on Cold Metal Transfer (CMT) technology can significantly impact various industries, such as automotive, aerospace, oil and gas, and manufacturing. By optimising CMT welding parameters and integrating advanced features like arc length control and waveform modulation, industries can achieve higher weld quality, reduce defects, and enhance productivity. This can lead to more reliable and efficient manufacturing processes, resulting in cost savings and improved product performance. Social implications associated with this research include the potential for increased job opportunities and skill development in the welding and manufacturing sectors. As industries adopt advanced CMT technology, there will be a growing demand for skilled workers trained in these techniques. Additionally, improved welding quality and reduced defects can lead to safer and more durable products, enhancing overall public safety and satisfaction. The integration of artificial intelligence in CMT welding also opens up new avenues for innovation and technological advancements, fostering a culture of continuous improvement and progress in the manufacturing industry.
Collaborations:
Dr V Balasubramanian,
Professor & Director,
Centre for Materials Joining & Research (CEMAJOR)
Annamalai University, Annamalai Nagar-608002, Tamilnadu.
Dr P Snehalatha,
Associate Professor & Head
Department of Mechanical Engineering,
Sri Padmavathi Mahila Visvavidyalam, Tirupati, Andhra Pradesh-517502, India.
Future Research Plans:
The upcoming work will concentrate on creating Functionally Graded Materials (FGMs) through Wire-Arc Additive Manufacturing (WAAM) by merging nickel and stainless steel. The goal of this research is to leverage the distinct properties of each metal to develop components suited for specialised high-performance applications. The primary challenges involve optimizing the interfaces between materials, refining the deposition processes, and ensuring strong structural integrity throughout the manufacturing process.
The link to the article: https://doi.org/10.1016/j.rineng.2024.102423
Continue reading →