Recent News

  • Two paper publications from Prof G S Vinod Kumar and his scholar September 29, 2022

    A robust body of published works helps advance research capabilities and contribute to the larger research domain. Two latest paper publications from the Department of Mechanical Engineering are co-authored by Prof G S Vinod Kumar and his PhD student, Mr Akshay Devikar.

    Two paper publications from mechThe first paper, Stabilization and Mechanical Properties of Mg-3Ca and Mg-3Ca/SiC/5p foams alloyed with Beryllium, got published in the Journal of Materials Engineering and Performance and had an impact factor of 2.036.

    Liquid processing of Magnesium is complicated due to its uncontrolled flammability in the presence of oxygen. However, owing to the lightweight property of Mg, it can be used as a structural material in various sectors such as naval, aerospace, automobile, biomedical, heat exchangers, and military applications. Therefore, using Ca and Be as alloying elements and oxidation preventers, the researchers produced lightweight Mg foams (of density 0.17 g/cm 3), which float on water. SiC particles provide excellent Mg foam stabilisation as well. The compression tests revealed the highest strength for Mg-3Ca foam containing both Be and SiC. Thus, the burning problem of Mg was overcome by adding Ca and a trace quantity of Be to make lightweight foams, which were strengthened by SiC particles.

    Abstract

    The present paper investigates the stabilisation of Mg-3Ca alloy and Mg-3Ca/SiC/5p composite foams with and without the addition of 0.12 wt.% beryllium. In Mg-3Ca alloy foam, Be addition has significantly improved the expansion and pore structure. Whereas, in the case of Mg-3Ca/SiC/5p composite foams, the SiC particles stabilised the foam effectively, while Be addition did not show any distinguishable improvement in the foam structure. The formation of BeO and the dense coverage of SiC particles in the gas-solid interface of Mg-3Ca and Mg-3Ca/SiC/5p composite foams, respectively, are the reasons for the foam stabilization. Mg-3Ca/SiC/5p composite foam exhibited the lowest foam density of 0.10 g/cm3. The quasi-static compression test shows that Mg-3Ca-0.12Be/SiC/5p composite foam containing Be exhibited lower foam density and higher normalized compressive strength. The energy absorption capacity per unit foam density in Be containing foams was also higher.

    2 research papers from mechThe second paper, the Effect of Beryllium on the stabilization of Mg-3Ca alloy foams, is published in the journal Materials Science and Engineering B with an impact factor of 3.407.

    Mg-3Ca alloy foams of density as low as 0.25 g/cm3 were successfully produced via the liquid metal route in an open-air atmosphere with trace Be addition. The stable BeO layer formed at the gas-solid interfaces of pores restricted the Mg + CO2/CO reaction, thereby reducing the gas loss responsible for foaming. Be addition (0.13 wt.%) resulted in a high-volume expansion of Mg-3Ca foam (694 %). Metallic single films also exhibited smooth and crack-free interfaces with Be addition.

    Abstract

    The present work is the first-ever study where the influence of beryllium (Be) addition on the stability of Mg alloy foam was investigated. Mg-3Ca alloy foams were produced by the liquid processing route with and without Be micro-addition. CaCO3 was used as a blowing agent. Mg-3Ca alloy foam without Be resulted in stable foam but exhibited low expansion with poor foam structure. Be addition significantly increased foam expansion and improved their structure. The expansion and the structure of the Mg foams obtained are comparable with that of commercially available aluminum foams. The XPS analysis confirmed the presence of BeO at the gas-solid interface of Mg foam. Be stabilizes the gas-solid interface of the foam by forming a smooth and crack-free surface of the BeO layer, which prevents the continuous oxidation of liquid foam and minimises the loss of blowing gas, thereby enhancing the stability of Mg-3Ca alloy foams.

    Bulletproof vests, Car body parts, Hip and Knee implants, Sound and heat-proof walls in theatres, Naval ship bodies, etc., are some of the applications of the research findings. The researchers have collaborated with Dr Manas Mukherjee (Associate Professor) and his PhD student, Mr Biswaranjan Muduli of the Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, for this work. Stabilisation using other alloying elements and ceramic particles for improving mechanical properties of Mg foams specific to application requirements and establishing structure-property relationship from the point of view of melt viscosity by altering the foaming parameters are the future plans of the research team.

    Continue reading →
  • Industry project sanctioned to Prof G S Vinod Kumar September 23, 2022

    Research project SRMAP

    The research project titled Development of Novel Gold and Silver Alloys was sanctioned to Prof G S Vinod Kumar from the Department of Mechanical Engineering. The project was sanctioned by Waman Hari Pethe Sons, a leading Gold/Diamond jewellery manufacturing company based in Maharashtra, with a total outlay of Rupees 17 Lakhs. The tenure of the project is two years, from May 2022 to May 2024.

    Prof Vinod Kumar’s research interests mainly revolve around the hardening of 22 carats and 24 carats gold for light-weight and high-strength jewellery and the novel processing of light alloy (Al and Mg) foam and studying the structure and properties. He has been intensely involved in the development of technologies for improving the hardness of 22k gold for weight saving and high strength in the cast and hand-made jewellery. This was jointly patented by SRM and Titan. He also has several industrial research partnerships and funded projects to his credit.

    The present project aims to develop novel high carat gold (24,22 and 18 carats) for high-strength and light-weight jewellery applications and novel silver alloys (high pure (99%) or sterling silver (92.5%)) having better anti-tarnishing capability. It further aims to develop colour gold alloys (Black, violet and pink gold). The project also involves both the lab-scale and industrial development of the process for scaling up jewellery production of the gold and silver alloys.

    Continue reading →

  • Fascinating overseas internship in Germany with SRM AP June 29, 2022

    Webot spot robotThe results will be astonishing when hard work goes hand in hand with smart work. Vanteddu Nikhileswar from the Department of Mechanical Engineering at SRM University-AP preferred to believe in this strategy and has successfully completed an Internship and Project at MASCOR Institute in FH Aachen University, Germany.

    Nikhileswar got the opportunity to do an Internship and the International Project Exchange Programme at Mobile Autonomous Systems and Cognitive Robotics Institute through Indo Euro Synchronization (IES), an organisation providing educational and research programmes beyond borders. Even though affected by the Covid-19 restrictions, he completed the project and internship that lasted 6 months with an excellent quality of work.

    Expert guidance

    Under the guidance of Dr Alexander Ferrein, Director of MASCOR Institute, Nikhileswar worked on his project “Webots Simulation of Spot Robot for Rescue League”. The project’s target was to create a bezier curve, find the inverse kinematics for spot Robot and Robot programming in ROS, and develop a webots simulation for the spot Robot and Quadruped gait to improve the motion capabilities in the webots simulation environment.

    Webot spot robot

    Priceless exposure

    The skilled learning sessions with the scholars at the institute were a valuable addition to the career growth of Nikhileswar. While working in Germany, he was able to visit well-known companies and industries, which provided the opportunity to interact with many students and working professionals. This helped him to gain enormous clarity regarding different aspects of work opportunities and life as a whole.

    Note of gratitude

    He was thankful to the Indo Euro Synchronization President, Mr Venkat Raj, the management of SRM university-AP, Prof. Prakash Jadav, and Dr Pramod Jammy. The special guidance of Dr Starke, founder of MASCOR Institute, and Dr Alexander Ferrein, Director of MASCOR Institute FH Aachen University, holds a crucial role in his project work and internship.

    Added accomplishment

    Apart from the project, he has also secured admission at RWTH Aachen University for the Masters in Management and Engineering in Production Systems (MME-PS). This university ranks 147 Globally in QS Ranking 2023 and Ranks 19 QS World University Rankings by Subject 2022: Mechanical, Aeronautical & Manufacturing Engineering.

    Continue reading →
  • Mechanical engineering students develop multi-utility buggy car June 17, 2022

    buggy carStories of innovation from SRM AP are not something new! M Tanveer, G Sai Venkat, and Divyansh Awasthi, three vibrant students from the Department of Mechanical Engineering at SRM University-AP, have built a multi-utility buggy car as a part of their final year project work.

    The students initially planned to build a completely new multi-utility vehicle. Later they slightly modified the idea to make a buggy car from scrap materials, i.e. by gathering the efficiently working components from old and unused cars and making them compatible with the chassis.

    Motivated by their admiration for the automotive industry, students had great enthusiasm for building the buggy car. They had an urge to convert theoretical knowledge gained from classrooms into practical working machines. Consequently, the trio developed an off-road diesel buggy to show their prowess in the automobile industry, especially on and off-road cars. A Diesel motor is utilised, which is competent in conveying a speed of 50 kilometres per hour.

    The chassis of the buggy is designed and manufactured by the students themselves. The spare parts and connection are from the TATA ZIP car model and incorporated into the buggy fitting to the design. The necessary fitting and binding of spare parts are done according to the driving comfort.buggy car

    The students expressed their gratitude for the support of their project guide Dr Jasvinder Singh, co-guide Prof Venkata N Nori, and HOD Prof Prakash Jadhav. “We received constant mentorship and guidance throughout our project tenure from them”, said the students. “Whenever we were stuck or were not able to solve a particular problem, or at times were mentally stressed and worn out, our professors gave us proper guidance to warded off our problems and stress, ” they added.

    Continue reading →
  • Recasting high-entropy alloys for enhanced performance June 9, 2022

     

    sheela singh

    High-entropy alloys (HEAs) are gaining research significance in recent times as they propose novel alloy designs and concepts demonstrating better performance. HEAs constitute multiple principal elements in varying concentrations and combinations to produce new materials with excellent physical properties and superior performance at extreme temperature conditions. Recent studies have brought out a few high-entropy alloys possessing exceptional properties, even capable of challenging the existing theories and models for conventional alloys. However only very little has been explored within this multidimensional space leaving limitless possibilities to be explored and materialized.

    Dr Sheela Singh, from the Department of Mechanical Engineering, has been conducting rigorous research in this domain and she has published research articles proposing novel ideas to tweak the properties of HEAs. In one of the articles co-authored by Dr Sheela, “Effect of minute element addition on the oxidation resistance of FeCoCrNiAl and FeCoCrNi2Al high entropy alloy”, published in the journal Advanced Powder Technology, she investigates the effect of Ti0.1 and Ti0.1Si0.1 addition on the high-temperature isothermal oxidation behaviour of dense FeCoCrNiAl and FeCoCrNi2Al high entropy alloys.

    Mechanical properties such as hardness & young’s modulus, thermal properties such as melting temperature, specific heat capacity and coefficient of thermal expansion (CTE) were investigated by Nano hardness tester (NHT), differential scanning calorimetry (DSC) and dilatometer, respectively. The phases present in the HEAs produced by hot vacuum pressing and after isothermal oxidation were characterized by X-ray diffraction, Scanning Electron Microscopy and Raman Spectroscopy.

    The weight gain recorded after isothermal oxidation for 5,25,50 and 100 hours at 1050°C was found to be parabolic in nature. X-ray diffraction analysis (XRD), as well as Raman spectroscopy analysis of HEA’s oxidized at 1050°C for 100 hours, shows the formation of the Al2O3 phase. A homogeneous thin oxide scale without any discontinuity was observed throughout the cross-section. It has been confirmed that Ti & Si addition in minute amount (0.1 at. % each) improves the mechanical properties and oxidation resistance as well as reduces the waviness of the oxide scale.

    Another article co-published by her, “Enhanced Magnetization with Increased Chromium Concentration in FeCoCrxNi2Al High-Entropy Alloy”, in Materials and Science Technology, reports the effect of increasing the concentration of antiferromagnetic element Cr in FeCoCrxNi2Al (x = 0.5, 1.5) High Entropy Alloy (HEA) on their magnetic properties. It was found that the structure and composition of different phases, and the likely degree of spinodal decomposition in the Cr-Fe rich BCC phase significantly affects the magnetic properties.

    Interestingly, the sample with Cr concentration x=1.5 showed two times larger saturation magnetization as compared to x=0.5. Furthermore, the magnetization versus temperature response shows a multi-phase character and exhibits distinct behaviour in low temperature and high-temperature regimes in both samples. The obtained soft ferromagnetic behaviour of these HEAs is crucial for the development of a new class of HEA for various applications.

    The considerable structural and functional potential, as well as the richness of design, make HEAs promising candidates for new applications prompting further studies in the field. There remains a vast compositional space that is yet to be discovered. New studies have to be initiated finding out effective ways to recognise regions within this space where high-entropy alloys with potentially interesting properties may be lurking. Dr Sheela’s research is a right step in this direction to pave the way for fruitful developments in the future.

    Continue reading →

TOP