Department of Environmental Science and Engineering

M.Sc. Environmental Science Curriculum and Syllabus (Applicable to the students admitted from AY 2024-26)

School of Engineering and Sciences SRM University-AP, Andhra Pradesh

Department Vision

To enhance societal welfare by developing skilled and committed professionals to address pressing environmental issues using sustainable strategies.

Department Mission

Statement 1	Provide rigorous education by employing innovative and interdisciplinary
	challenges.
Statement 2	Equip future leaders with essential skills to develop sustainable solutions for pressing environmental, societal, and climatic issues.
Statement 3	Cultivate a new generation of environmental educators and researchers capable of effectively tackling complex environmental challenges.

Program Educational Objectives (PEO)

PEO 1: To create awareness and knowledge about sustainability.

PEO 2: To produce confident, technical, creative and employable postgraduates.

PEO 3: To create awareness and innovation to deal with environmental issues.

Mission of the Department to Program Educational Objectives (PEO) Mapping

	PEO 1	PEO 2	PEO 3
Mission Statement 1	3	2	3
Mission Statement 2	3	3	3
Mission Statement 3	3	3	3

Program Specific Outcomes (PSO)

PSO 1: Identify the solution for complex environmental problems.

PSO 2: Analyse environmental issues and design necessary modules to arrive at optimized solutions.

PSO 3: Design/recommend sustainable solutions for efficient use of natural resources to meet sustainable development goals (SDGs).

Mapping Program Educational Objectives (PEO) to Program Learning Outcomes (PLO)

PEOs	Program Learning Outcomes (PLO)					
	POs	PSOs				

	and nary	cal 3 and	and hinking	asoning ign	telated s	ols and age	nt and vility	cultural ical	l and Skills	cation	hip Skills	ed and arning	1	8	3
	Scientific Disciplir	Analyti Reasoning	Critical Reflective T	Scientific Re and Des	Research F Skills	Modern To ICT Us	Environme Sustainal	Moral, Multi and Eth	Individu <i>e</i> Teamwork	Communi Skills	Leaders Readiness	Self-Direct	PSO	PSO	OSd
PEO 1	1	1	1	1	2	1	3	2	1	3	2	1	1	1	3
PEO 2	2	2	3	3	2	2	3	2	2	1	1	2	2	2	3
PEO 3	3	1	1	1	3	2	3	2	3	1	3	3	3	3	3

Category Wise Credit Distribution

Course Sub-category	Subcategory Credits	Category Credits	Learning hours
Ability Enhancement Courses (AEC)		Sum of (A + B)	(2 + 1)
University AEC	2		λ 20 - 00
School AEC	1	3	30 - 90
Value Added Courses (VAC)		Sum of (C + D)	(4 + D)
University VAC	4		X 20 – 120
School VAC	-	4	30 - 120
Skill Enhancement Courses (SEC)		Sum of (E + F + G)	(6 + F + G)
School SEC	6		Х ́
Department SEC	-	6	30 = 180
SEC Elective	-		
Foundation/ Interdisciplinary courses (FIC)		Sum of (H + I)	(9 + I)
School FIC	9		Λ 20 - 270
Department FIC	-	9	30 - 270
Core + Core Elective including Specialization (CC)		Sum of (J + K)	(30 + 15) X
Core	30		30 = 1350
Core Elective (Inc Specialization)	15	45	50 - 1550
Minor (MC) + Open Elective (OE)	L Credits	Sum of (L)	(L) X 30
Research / Design / Internship/ Project (RDIP)		Sum of (M + N)	(3 + 14)
Internship / Design Project / Startup / NGO	3		30 = 510
Internship / Research / Thesis	14	17	50 - 510
Total		Sum of (A to N) = 84	Sum of (A to N) = 2520

Catagory	Semester									
Category	Ι	II	III	IV	V	VI	VII	VIII	Total	%
Ability Enhancement Courses - AEC		1	1	-	-	1	-	-	3	
Value Added Courses - VAC	2	2	-	-	-	-	-	-	4	
Skill Enhancement Courses - SEC		3	-	-	-	-	-	-	6	
Foundation / Interdisciplinary Courses - FIC	3	3	3	-	-	-	-	-	9	
CC / SE / CE / TE / DE / HSS	13	14	18	-	-	-	-	-	45	
Minor / Open Elective - OE		-	-	-	-	-	-	-	-	
(Research/ Design/ Industrial Practice/Project/Thesis/Internship) -RDIP		-	3	14	-	-	-	-	14	
Grand Total	22	23	25	14	-	-	-	-	84	

Semester wise Course Credit Distribution Under Various Categories

Note: L-T/D-P/Pr and the class allocation is as follows (15 weeks in a semester).

- a) One contact hour of Lecture/Tutorial per week of 60 minutes each is equivalent to 1 credit.
- b) Two contact hours of Discussion per week of 60 minutes each is equivalent to 1 credit.
- c) Two contact hours of Practical per week of 60 minutes each is equivalent to 1 credit.
- **d)** Two contact hours of Project work per week of 60 minutes each is equivalent to 1 credit. (timetable not required)

S. No.	Semester	Credits
1	Ι	22
2	II	23
3	25	
4	IV	14
	84	

	SEMESTER - I												
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С					
1	AEC1	University AEC	VAC 104	Community Engagement and Social responsibility	0	0	0	1*					
2	VAC1	University VAC	AEC 501	Effective communication for impactful interviews	2	0	0	2					
3	SEC1	School SEC	SEC 501	Introduction to R and Python	1	1	1	3					
4	CC	Department	EVS 501	Environmental issues, Climate Change, and sustainable development	3	1	0	4					
5	CC	Department	EVS 502	Earth and Planetary processes	2	1	0	3					
6	CC	Department	EVS 503	Environmental Pollution	2	1	0	3					
7	CC	Department	EVS 504	Environmental Laboratory – I	0	0	3	3					
8	FIC	School	FIC 501	Data Science for Beginners	3	0	0	3					
				Semester Total	13	4	4	22					

	SEMESTEK - II												
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	C					
1	AEC2	University AEC	VAC 502	Community Engagement and Social responsibility	0	0	0	1*					
2	VAC2	University VAC	VAC 503	Entrepreneurial mindset	2	0	0	2					
3	SEC2	School SEC	SEC 105	Research Design and Methods	2	1	0	3					
4	CE	Department	EVS 550/EVS 551/EVS 552/EVS 553	Freshwater Resources / Introduction to Limnology & Oceanography / Solid Waste Management / Wastewater Treatment / Water contaminants: Sources, Transport and Remediation strategies / Carbon Sequestration	2	1	0	3					
5	CC	Department	EVS 505	Environmental Chemistry & Microbiology	3	1	0	4					
6	CC	Department	EVS 506	Ecology & Biodiversity	3	1	0	4					
7	СС	Department	EVS 507	Environmental Laboratory – II	0	0	3	3					
8	FIC	University	FIC 108	Design Thinking	3	0	0	3					
		15	4	3	23								

Summer Internship

S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С
1	RDIP	Department		Summer Internship	0	0	3	3
		Total			0	0	3	3

	SEMESTER - III													
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	C						
1	AEC3	School AEC		Research Seminar	0	0		1*						
2	CC	Department	EVS 508	Environmental Impact Assessment and Audits	2	1	0	3						
3	CC	Department	EVS 509	Geospatial Technologies for Environmental Applications	2	1	0	3						
4	CE	Department	EVS 554/EVS 555/EVS 556/EVS 557	Hydroinformatics / Aquatic Microbial Ecology & Biogeochemistry / Applied Hydrogeology / Urban Mining and Sustainability	2	1	0	3						
5	CE	Department	EVS 560	Energy and Environment / Process Design and Systems Analysis / Soil Pollution and Remediation Measures	2	1	0	3						
6	CE	Department	EVS 562/EVS 563	Environmental Entrepreneurship and planning / Biomass Energy / Agriculture, food security and climate change	2	1	0	3						
7	CE	Department	EVS 565/	Bioeconomy / Membrane Technology for Industrial Water Treatment / Ecosystem Restoration	2	1	0	3						
8	FIC	School		Open Elective	3	0	0	3						
		Semester Total	15	6	0	22								

	SEMESTER - IV											
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	C				
1	RDIP	Internship/Research/Thesis		Project Work	0	0	14	14				
				Semester Total	0	0	14	14				

Specializations / Core Electives / Open Electives / Minor

S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С				
		Wate	er Security	and Under Water Life Stream								
			EVS 550	Freshwater Resources	2	1	0	3				
			EVS 551	Introduction to Limnology & Oceanography	2	1	0	3				
	Elective	Department	EVS 554	Hydroinformatics	2	1	0	3				
			EVS 556	Applied Hydrogeology	2 1	0	3					
			EVS 555	Aquatic Microbial Ecology & Biogeochemistry	2	1	0	3				
Waste and Resource Management Stream												
			EVS 552	Solid Waste Management	2	1	0	3				
			EVS 555	Wastewater Treatment	2	1	0	3				
			EVS 557	Urban Mining and Sustainability	2	1	0	3				
			EVS 560	Soil Pollution and Remediation Measures	3	0	0	3				
	Elective	Department	ENV 120	Water contaminants: Sources, Transport and Remediation strategies	2	1	0	3				
			-	Membrane Technology for Industrial Water Treatment	2	1	0	3				
			EVS 563	Agriculture, food security and climate change	2	1	0	3				
			OEC 104	Carbon Sequestration	2 1	1	0	3				
			-	Ecosystem Restoration	2	1	0	3				

	Energy Stream											
			EVS 561	Environmental Entrepreneurship and planning	2	1	0	3				
			EVS 562	Biomass Energy	2	1	0	3				
	Elective	Department	EVS 564	Bioeconomy	2	1	0	3				
			EVS 559	Process Design and Systems Analysis	2	1	0	3				
			EVS 558 Energy and Environment					3				

Expected

Attainment

Percentage

50%

60%

60%

60%

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Enecuve Communication for Impaction Interviews													
Course Code	AEC 501	Course Category	AEC	L-T/D-P/Pr-C	2	0	0	2						
Total Contact Ho	urs	45	Total Learning F	Iours		6	0							
Pre-Requisite	None	Co-Requisite	None	Progressive										
Course(s)	None	Course(s)	None	Course(s)										
Course Offering	Litoroturo 8.	Professional /												
Doportmont	Literature & Languages	Licensing												
Department		Standards												

T.CC. . 49

Course Objectives:

This course equips the learners for successful job hunting by fostering a comprehensive understanding and application of the KASB Model in professional communication, enhancing verbal communication skills to excel in interviews, mastering non-verbal communication for a positive first impression, and guiding them in customizing application materials to stand out from the crowd.

At the end of the course the learner will be able to Expected Bloom's Proficiency Level Percentage **CO1** Identify key components of verbal and non-verbal communication and their significance in the interview 1 50% process. **CO 2** Develop the skill to articulate thoughts clearly and 2 65% concisely, using effective interview responses. **CO 3** Exhibit proficiency in the art of storytelling as a 2 65% communication tool in interviews. **CO** 4 Create personalized and tailored resumes, cover letters, and SOPs to align with specific job or educational 3 70% opportunities.

Course Outcomes (COs)

Learning Assessment (Macro)

		Cont	tinuous Learning	g Assessments (6	60%)
Bloon Cogr	n's Level of nitive Task	CLA-1 (15%)	CLA-2 (15%)	CLA-3 (15%)	Interview Handling Process (40%)
Level Remember		100%	30%	50%	20%
1	Understand	100%	30%	30%	20%
Level	Apply		700/	500/	500/
2	Analyse		70%	30%	30%
Level	Evaluate				30%
3	Create				2370
	Total	100%	100%	100%	100%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

		()		0		0								
					Pro	gram 🛛	Learn	ing O	utcon	nes (P	LO)				
CLOs	Scientific and Disciplinary Knowledge	Analytical Reasoning and Problem Solving	Critical and Reflective Thinking	Scientific Reasoning and Design Thinking	Research Related Skills	Modern Tools and ICT Usage	Environment and Sustainability	Moral, Multicultural and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Leadership Readiness Skills	Self-Directed and Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	1	1	1	3	1		3	2	3	2	3			
Outcome 2	2	3	3	1	3	1		3	2	3	3	3			
Outcome 3	2	1	3	2	3	2		3	2	3	3	3			
Outcome 4	2	3	3	2	3	3		3	2	3	3	3			
Course	2	2	2.5	1.5	3	1.75		3	2	3	2.75	3			
Average															

Course Unitization Plan

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
Unit 1	Introduction: An Overview	9		
	Types of interview	2	1	4
	Communication as a strategy	3	1	4,5
	The KASB Model	4	1	4
Unit 2	Articulation Skills	8		
	The 3 Vs of Communication	2	1	1,4
	Tone, Pitch and Modulation	4	2	4,5
	Practice session	4	2	
Unit 3	Story Telling	6		
	The Importance of story telling	2	3	6
	Creating stories around' Tell Me About Yourself'	2	3	6,7
	Group Discussion	2	3	8
Unit 4	Written Strategy	10		
	Resume	4	4	2,4
	Cover Letter	4	4	2,4
	SOP	2	4	2,4
Unit 5	Mock Interview Sessions	12		
			1,2,3.4	
	Total Hours	45		

Recommended Resources

- 1. Cialdini, R. B. (2021). Influence: The psychology of persuasion (Revised edition). Harper Perennial Modern Classics.
- 2. Dipboye, R. L., & Cole, C. H. (2019). Secrets of a hiring manager: How to land any job and win over any boss. HarperBusiness.
- 3. LaFare, M. (2013). Veritas: A game of lies. Penguin Books.
- 4. Mock, P., & Turner, L. (2019). The interview for dummies (6th edition). John Wiley & Sons.

- 5. Stone, D. D., Patton, B., & Heen, S. (2000). Difficult conversations: How to discuss what matters most (2nd edition). Viking.
- 6. Dolan, G. (2019). Storytelling for job interviews: How to use stories, nail an interview and land your dream job. BookBaby.
- 7. Pink, S. (2014). To sell is human: The science of persuasion. Penguin Books.
- 8. Lewis, V. J. (2018). Group discussion: A practical guide (7th edition). Kogan Page

Course Designers

Dr. Srabani Basu, Associate Professor, SRM University AP

Introduction to R and Python

Course Code	SEC 501	Course Category	Ĩ	L-T-P-C	2	0	2	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Mathematics	Professional / Licensing Standards						

Course Objectives

- 1. In Python, identify and describe essential elements such as syntax, keywords, variables, indentation, data types, lists, tuples, sets, dictionaries, operators, control statements, and loops.
- 2. Understand the significance of built-in functions, user input-output, matrix computations, linear equations, and graphing curves and surfaces using Matplotlib and file handling in Python.
- 3. Implement R programming fundamentals, including objects, vectors, matrices, arrays, data manipulation techniques (subsetting, filtering, merging), and data frames, and create visualisations using ggplot2 in R.
- **4.** Synthesise knowledge from Python and R to perform comprehensive data analysis and create reports that include descriptive statistics, linear regression, hypothesis testing, and time series forecasting.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Demonstrate an understanding of Python programming fundamentals, including syntax, keywords, variables, data types, lists, tuples, sets, dictionaries, operators, and control statements.	2	80	70
2	Grasp core programming concepts by comprehending the role of built-in functions, user input-output, file handling and graphing curves and surfaces using Matplotlib in Python.	3	75	70
3	Apply programming skills in R by effectively using objects, vectors, matrices, arrays, and data frames, and will demonstrate the practical application of data manipulation techniques, including sub-setting, filtering, and merging, and create visualizations using ggplot2 in R.	4	75	70
4	Integrate Python and R knowledge to perform sophisticated data analysis that incorporates descriptive statistics, linear regression, hypothesis testing, and time series forecasting, showcasing a synthesis of programming skills across both languages.	4	75	70
5	Demonstrate an understanding of Python programming fundamentals, including syntax, keywords, variables, data types, lists, tuples, sets, dictionaries, operators, and control statements.	2	80	70

					Prog	ram l	Learn	ing O	utcon	nes (F	PLO)				
CLOs	Scientific and Disciplinary Knowledge	Analytical Reasoning and Problem Solving	Critical and Reflective Thinking	Scientific Reasoning and Design Thinking	Research Related Skills	Modern Tools and ICT Usage	Environment and Sustainability	Moral, Multicultural and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Leadership Readiness Skills	Self-Directed and Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	3	3	3					1			2	3	1	2
Outcome 2	3	3	3	2	1				2			2	3	2	2
Outcome 3	3	3	3	3	1				2			2	3	2	2
Outcome 4	3	3	3	3	3				3			2	3	2	2
Outcome 5	3	2	3	3	3				2			3	2	2	2
Course Average	3	3	3	3	2				2			2	3	2	2

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit		6		
No. 1	Introduction to data and its different types of scales.	3	1,2	1
	Summarising data, different types of descriptive statistics	3	1,2	1
Unit		9		
No. 2	Introduction to Vectors, matrices	3	2,3	1
	Recursive functions, Matrix computations and linear equations	3	2,3	1
	Solving system of Linear Equations. Consistency, transpose, determinants, inverses, trace,	3	2,3	1
Unit		15		
No. 3	Basic principles of probability, Random variables.	2	3,4	2
	The Binomial, Normal and other popular distributions.	2	3,4	2
	Inference for one or two samples means using the t-distribution, statistical power for comparing two groups	2	3,4	2
	Introduction to Correlation Analysis, Correlation coefficient for Categorical and Continuous data.	2	4	2
	Introduction to the logistics regression.	4	4	2
Total Con	ntact Hours		30	

Course Unitization Plan - Lab

No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1	Write a program to demonstrate the use of Python syntax, keywords, and variables.	2	1	1
2	Create a program that uses indentation and comments to improve code readability.	2	1	1
3	Implement a program that showcases different data types in Python (int, float, string, Boolean).	2	1	1
4	Write a program that manipulates lists (e.g., sorting, appending, slicing).	2	1	1
5	Create a program that demonstrates using tuples and sets in Python.	2	2	1
6	Implement a dictionary to store and retrieve information.		2	1
7	Write a program that uses different operators in Python $(+, -, *, /, //, \%, **)$.	2	2	1
8	Create a program that includes control statements (if-else, nested if-else, switch-case) and loops (for, while).	2	2	1
9	Write a program to create and manipulate objects in R.	2	3	2
10	Implement a program that demonstrates using vectors and matrices in R.	2	3	2
11	Create a program that works with arrays and lists in R.	2	3	2
12	Write a program to handle missing data in a data frame.	2	3	2
13	Implement a program that reads and writes data to CSV or text files.	2	4	2
14	Create a program that performs data manipulation tasks (subsetting, filtering, merging) on a data frame.	2	4	2
15	Write a program that uses ggplot2 to create a plot in R.	2	3,4	2
Total Con	tact Hours		30	

Learning Assessment

			Conti	nuous I	Learnin	g Asses	sments	(60%)		End		
Bloom Cog	Bloom's Level of Cognitive Task		A-1 1%)	CL. (10	A-2 1%)	-2 CLA-3 (10%)		Mid Term (20%)		Semester Exam (40%		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	35%	40%	30%	15%	25%		20%	20%	20%	15%	
1	Understand	35%	40%	30%	15%	25%		20%	20%	20%	15%	
Level	Apply	15%	10%	20%	20%	25%		20%	20%	25%	25%	
2	Analyse	15%	10%	20%	20%	25%		20%	20%	25%	25%	
Level	Evaluate				15			10%	10%	5%	10%	
3	Create				15			10%	10%	5%	10%	
	Total		100%	100%	100%	100%	100%	100%	100%	100%	100%	

Recommended Resources

- 1. Guido van Rossum and the Python development team Python Tutorial Release 3.7.0.
- 2. W. N. Venables, D. M. Smith and the R Core Team, An Introduction to R
- 3. R in Action, Robert L. Kabacoff, Second Edition, Paperback, Dreamtech Press
- 4. A Beginner's Guide to R, Alain F. Zuur, Elena N. Ieno, Erik H. W. G. Meesters, Springer New York.
- 5. The Absolute Beginner's Guide to Python Programming, A Step-by-Step Guide with Examples and Lab Exercises, Kevin Wilson, Apress Berkeley, CA
- 6. Python Programming Fundamentals, Kent D. Lee, Springer London

Env	vironmental Issues	, Climate Change a	nd Sustainable	Developmen	t		
Code	EVS 501	Course Category	CC	L-T-P-C	3	1	

Course Code	EVS 501	Course Category	CC	L-T-P-C	3	1	0	4
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)				
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards		-				

Course Objectives

- 1. To understand the basic concepts, principles, and background of major environmental issues.
- To understand the basic concepts, principles, and physical science basis of climatic change. 2.
- 3. To provide a strong background, principles, and practices on the concept of sustainability.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Acquire knowledge on various Environmental issues	1	80%	70%
2	Explain different aspects climate change and its impacts on environment, solutions, and the way ahead.	2	80%	70%
3	Illustrate the role of various ecosystems in climate change adaptation and mitigation.	3	80%	70%
4	Explore concepts, principles and practice of sustainable development.	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pı	ogram	Learni	ing Ou	tcomes	(PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	FSO 3
Outcome 1	-	1	1	2	1	1	3	2	1	-	1	3	1	2	2
Outcome 2	-	1	1	2	1	1	3	2	1	-	1	3	1	2	2
Outcome 3	-	1	1	2	1	1	3	2	1	-	1	3	1	2	2
Outcome 4	-	1	1	2	1	1	3	2	1	-	1	3	1	2	2
Course Average	-	1	1	2	1	1	3	2	1	-	1	3	1	2	2

Course Unitization Plan

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Fundamentals of Environment	12	1	1, 2, 11
	Concept, ideas, and types and components of environment; objectives	3	1	1, 2, 11
	Man, society and environment relationships	3	1	1, 2, 11
Unit No.	Moral and aesthetic nature of environmental science	3	1	1, 2, 11
1	Sustainability and carrying capacity	2	1	1, 2, 11
	Environmental awareness	2	1	1, 2, 11
	Global Environmental change	2	1	1, 2, 11
	Climate Change and Policy	15	1,2	3, 4, 5
	Conventions on climate change: national and international initiatives	2	1,2	3, 4, 5
	National Action Plan, State Action Plan	2	1,2	3, 4, 5
Unit No.	Environmental policy debate; international agreements	2	1,2	3, 4, 5
	Montreal Protocol 1987; Kyoto Protocol 1997	2	1,2	3, 4, 5
2	United Nations Climate Change conferences	2	1,2	3, 4, 5
	Paris Agreement, IPCC	1	1,2	3, 4, 5
	Global Scenario – Indian Scenario – Observed changes and projected changes of IPCC - carbon credit and carbon trading;	3	1,2	3, 4, 5
	Clean Development Mechanism	1	1,2	3, 4, 5
	Impacts, Adaptation and Mitigation Strategies	12	2	6, 7, 8
	Impacts of climate change on forest ecosystems, agriculture, livestock, terrestrial and aquatic ecosystems	2	2	6, 7, 8
	Impacts of climate change on terrestrial and aquatic ecosystems	1	2	6, 7, 8
Unit No. 3	Introduction and concept of Mitigation and Adaptation, agriculture, forestry and other land use change and management	3	2	6, 7, 8
	Introduction and concept of human health, afforestation and reforestation	2	2	6, 7, 8
	Implications for policy and sustainable development	2	2	6, 7, 8
	Carbon capture and sequestration	2	2	6, 7, 8
	Sustainable Development	11	3	9, 10
Unit	Concept of sustainable development	1	3	9, 10
No.	Sustainable Development Goals	2	3	9, 10
4	Triple bottom line of sustainable development	2	3	9, 10
	Principles of sustainable development, Leopold's land ethics	2	3	9, 10

	Instituting sustainable development – Brundtland commission report	2	3	9, 10
	Earth summit, World summit on sustainable development; Rio+20 and beyond	2	3	9, 10
	Individualising Responsibility	10	4	9, 10
	Consumerism; Consumption and its environmental impact – mobile phones and fashion	2	4	9, 10
Unit No.	Sustainable consumption – global initiatives; Private sector and civil society initiatives;	3	4	9, 10
5	Carbon neutrality; Eco-labelling; Limits of individualizing responsibility;	3	4	9, 10
	Resistance – unsustainable agricultural practice.	2	4	9, 10
Total	Hours	60		

Learning Assessment

			Continuous Learning Assessments (50%)									
Bloom's Level of Cognitive Task		CLA-1 (10%)		CLA-2 (10%)		CLA-3 (15%)		Mid Term		Semester Exam (50%)		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	40%	-	30%	-	20%	-	50%	-	50%	-	
1	Understand		-		-		-		-		-	
Level	Apply	60%	-	70%	-	80%	-	50%	-	50%	-	
2	Analyse		-		-		-		-		-	
Level	Evaluate		-		-		-		-		-	
3	Create		-		-		-		-		-	
Total		100%	-	100%	-	100%	-	100%	-	100%	-	

Recommended Resources

- 1. Environmental Science: A Study of Interrelationship; Enger & Smith. 16th Edition, McGraw Hill.
- 2. Environmental Science: A Global Concern; Cunningham & Saigo WCB. 16th Edition McGraw Hill.
- Global Environmental Politics Problems, Policy and Practice. Cambridge University Press. Hayley S. (2018). ISBN: 978-1-107-12183-6
- 4. Humanity's Footprint: Momentum, Impact, and Our Global Environment. Columbia University Press. Walter K. D. (2018).
- Global Environmental Issues 2nd Edition. John Wiley & Sons. Frances Harris (2012). ISBN: 1119952085, 9781119952084
- 6. Environmental Issues Daya Publishing House. Malik S. S. (2020). ISBN: 9789388982962
- Climate Change: Causes, Effects and Solutions for Global Warming. David S.K.T., Jaqueline A.S. Candice Janco (2021).

- 8. Climate and Global Environmental Change (Understanding Global Environmental Change) 1st Edition Prentice Hall. (2018).
- 9. Climate Change: A Very Short Introduction. Maslin M. (2014). Oxford Publications.
- Climate Change: The Science of Global Warming and our Energy Future. Mathez, E.A. Simerdon J.E. (2018). 2nd Edition. Columbia University Press.
- 11. Environmental Science 9th Edition. Jones & Bartlet publishers. Daniel D.C. (2012). ISBN: 978-93-80853-60-4

Course designer

Dr. Shoji D. Thottathil and Dr. Deblina Dutta, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Course co-ordinator

Dr. Shoji D. Thottathil, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	EVS 502	Course Category	ĊĊ	L-T-P-C	2	1	0	3
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-			
Course Offering Department	Environm ental Science and Engineeri ng	Professional / Licensing Standards	-					

Earth and Planetary processes

Course Objectives

- **1.** Aims to provide an overview of various processes shaped our planet from global to local scale.
- **2.** To understand structure of our plant, its place in the solar system, and reasons behind some of the natural calamities such as volcanic eruption, earthquakes.

Outcomes	At the end of the course, the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Explain how earth came to be what it now, understand how it works, and current variability due to anthropogenic activities	2	80%	70%
Outcome 2	Classify different types of rock formation, mountain, and landscape building processes	2	80%	70%
Outcome 3	Articulate the structure of the Earth's interior and tectonic movements	3	80%	70%
Outcome 4	Assess reasons behind the natural calamities such as earthquakes volcanic eruption and the relation with the climate change vis-a-vis	3	80%	70%

Course Outcome (COs)

Course Articulation Matrix (CO) to Program Learning Outcomes (PO)

	Prog	gram	Lear	ning	Outc	omes	(PO)								
COs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural Skills	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork	Communication Skills	Project Management and Finance	Self-Directed and Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	-	1	-	1	1	1	3	-	1	-	1	1	0	0	0

Outcome 2	-	1	-	1	1	1	3	-	1	-	1	1	0	0	0
Outcome 3	-	2	2	2	1	1	3	1	1	1	1	2	0	0	0
Outcome 4	-	3	3	3	3	2	3	2	1	1	2	3	0	0	0
Course Average	-	1. 7 5	2. 5	1. 75	1. 5	1.2 5	3	1. 5	1	1	1.25	1.75	0	0	0

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	COs Addressed	References Used
Unit 1	Origin of Earth and its position in the solar system	9	1	1, 2
	Origin of solar system; Early earth; Exploring solar system and beyond	3	1	1, 2
	Geological timescale; and evolution of life	3	1	1, 2
	Earth systems (atmosphere, hydrosphere, lithosphere, and biosphere) and their interactions	3	1	1, 2
Unit 2	Structure of Earth's interior and tectonic plates	8	3	1, 2
	The layered Earth - Crust, Mantle, and Core	2	3	1, 2
	Chemical composition of Earth's major layers	3	3	1, 2
	Tectonic plates; Rates and history of tectonic plate movements	3	3	1, 2
Unit 3	Rocks, Minerals, sedimentation, and weathering	8	2	1, 2
	Minerals: Formation, properties, and structure; Properties and types of rocks	2	2	1, 2
	Sedimentation and burial, from sediments to rocks	2	2	1, 2
	Alteration of rocks by temperature and pressure	2	2	1, 2
	Geological history from rocks, weathering, erosion, and mass wasting.	2	2	1, 2
Unit 4	Volcanoes, Earthquakes, and landscape development	10	3,4	1, 2
	What are volcanoes; Volcanic deposits, eruptions and landforms; Interaction with volcanoes and other geosystem	2	3,4	1, 2
	Global patterns and human affairs of volcanism	2	3,4	1, 2

	What are earthquakes; understanding earthquakes; prediction, hazards, and risks of earthquakes	2	3,4	1, 2
	Topography, Elevation, and Relief;	2	3,4	1, 2
	Landforms: Features Sculpted by Erosion, and Sedimentation; Models of landscape development	2	3,4	1, 2
Unit 5	Climate systems and human impacts on Earth's processes	10	3,4	1,3
	Components of climate systems – Atmosphere, Hydrosphere, Lithosphere, Cryosphere and Biosphere	2	3,4	1,3
	Greenhouse gas effect; Climate variation – regional to global scale; Long-term global variation	1	3,4	1,3
	Carbon cycle; Anthropogenic effects on climate change	2	3,4	1,3
	Carbon economy	1	3,4	1,3
	Global energy consumption	2	3,4	1,3
	Fossil fuels – global warming – consequences	2	3,4	1,3
	Total Hours	45		

Learning Assessment

Dloor	n's Loval of	Conti	inuous Learnin	g Assessments	(50%)	End
	nitive Tesk	CLA-1	CLA-2	CLA-3	Mid-1	Semester
Cugi	nuve lask	(10%)	(15%)	(10%)	(15%)	Exam (50%)
Level	Remember	30%	50%	30%	50%	25.0/
1 Understand						23 /0
Level	Apply	70%	50%	70%	50%	75%
2	Analyse	-	-	-	-	-
Level	Evaluate	-	-	-	-	-
3	Create					
	Total	100%	100%	100%	100%	100%

Recommended Resources

- 1. Carlson, D.H., Plummer, C.C., Hammersley, L. (2015) Physical Geology (15th edition), Mac Graw Hill.
- 2. Faure, G., and Mensing, T.M. (2017) Introduction to Planetary Science The Geological Perspective. Springer Publishers. ISBN-13 978-1-4020-5233-0 (HB)
- 3. Cowie, J. (2002) Climate change: Biological and Human Aspects (2nd Edition), Cambridge University Press

Course designer

Dr. Shoji D. Thottathil and Dr. Kousik Das, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Environmental Pollution

Course Code	EVS 503	Course Category		2	1	0	3	
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	-				
Course	Environmenta	Professional /						
Offering	1 Science and	Licensing	-					
Department	Engineering	Standards						

Course Objectives / Course Learning Rationales (CLRs)

1. Aims to provide fundamentals of air pollution and its chemistry.

2. To understand different air pollutants, environmental conditions, and monitoring techniques.

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course, the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify different types of environmental pollution and health impacts.	1	80%	70%
Outcome 2	Explain air pollution and its control measures.	2	80%	70%
Outcome 3	Determine water and soil pollutants and treatment processes.	3	80%	70%
Outcome 4	Examine noise and radiation pollution and appropriate control measures.	3	80%	70%

	Pro	gram	Lear	ning	Outco	omes	(PLO)							
CLOs	En gi ne eri ng Kn ow led ge	Pr ob le m An aly sis	De sig n an d De vel op me nt	An aly sis , De sig n an d Re se arc h	M od er n To ol an d IC T Us ag e	So cie ty an d M ult icu ltu ral Sk ills	En vir on me nt an d Su sta ina bil ity	M or al, an d Et hic al A wa re ne ss	In di vi du al an d Te am wo rk Sk ills	Co m un ica tio n Sk ills	Pro ject Ma nag em ent and Fin anc e	Sel f- Dir ect ed Lif e Lo ng Lea rni ng	P S O 1	PS O 2	PS O 3
Outcome 1	1	-	-	1	-	-	3	-	1	-	-	1	3	3	3
Outcome 2	1	-	-	1	1	-	3	I	1	-	-	1	3	3	3
Outcome 3	1	-	-	1	1	-	3	I	1	-	-	1	3	3	3
Outcome 4	1	-	-	1	-	-	3	-	1	-	-	1	3	3	3
Course Average	1	-	-	1	1	-	3	-	1	-	-	1	3	3	3

Unit No.	Unit Name	Required	CLOs	References
		Contact	Addressed	Used
		Hours		
Unit 1	Pollution and Its impacts	5	1	1, 2
	Definitions of Pollution and contaminants,	1	1	1, 2
	Types of pollution, environmental effects and	1	1	1, 2
	health impacts			
	Walkthrough analysis of different types of	3	1	1, 2
	pollution in surrounding environment			
Unit 2	Air Pollution and Controls	10	1,2,3	1,3
	Sources of air pollution	1	1,2,3	1,3
	Classification of air pollutants,	1	1,2,3	1,3
			1.0.0	1.0
	Environmental and health effects due to air	1	1,2,3	1,3
	pollutants		1.0.0	1.0
	Air pollution control measures	1	1,2,3	1,3
		1	100	1.2
	Air pollution control using Scrubber, Bag filter,	1	1,2,3	1,3
		1	100	1.2
	Air pollution control using Bag filter	1	1,2,3	1,3
	Air pollution control managing using ESP	1	123	1.2
	All pollution control measures using ESI	1	1,2,3	1,5
	Case studies of Air pollution: Bhopal Gas	1	123	13
	Tragedy & London Smog	1	1,2,5	1,0
	Case studies of Air pollution: Donora Episode	1	123	13
	Malaysian Haze Enjsode	1	1,2,5	1,0
Unit 3	Water Pollution and Controls	10	12	24
Cint 5	Water Fondtion and Controls	10	1,2	2,7
	Sources of water pollution	1	1.2	2.4
	Politico of Hardi Politici	_	-,-	_,.
	Types of water pollution,	1	1,2	2,4
	Water standards, water quality index,	1	1,2	2,4
	Water treatment process	1	1,2	2,4
	Case studies on water and waste pollutions	3	1,2	2,4
		2	1.2	2.4
	Analyze the water parameter from the case study	3	1,2	2,4
Init 1	Soil Pollution and Controls	10	13	3
		10	1,5	5
<u> </u>	Source of soil pollution	1	13	3
	Source of son ponution	1	1,5	5
	Soil pollution and their harmful effects soil	1	1.3	3
	quality		7 -	

Course Unitization Plan

	Soil remediations; physical and chemical	1	1,3	3
	remediation			
	Phytoremediation	1	1,3	3
	Bioremediation	1	1,3	3
	Case studies on soil pollution and remediation	3	1,3	3
	Handson experience on soil parameter	2	1,3	3
Unit 5	Noise and Radiation Pollution and its Controls	10	1,4	1,2,4
	Noise and Sound levels	1	1,4	1,2,4
	Noise detector, noise standards, and control	1	1,4	1,2,4
	measures			
	Radiation, classification of radiation hazards, control measures	1	1,4	1,2,4
	Radiation control measures	1	1,4	1,2,4
	Case study on Chernobyl, National Highways,	3	1,4	1,2,4
	etc.			
	Analyse different locations with sound meter	3	1,4	1,2,4
	Total hours	45		

Recommended Resources

- 1. Environmental Pollution Control Engineering. CS Rao (2021), New Age International Publisher.
- 2. Wastewater Engineering: Treatment, disposal, Reuse (4th ed.). Metcalf & Eddy Inc. Tata McGraw-Hill, New Delhi, 2004.
- 3. Soil Pollution: From Monitoring to Remediation, 1st Edition. Armando Duarte, Anabela Cachada, Teresa Rocha-Santos (2018), Elsevier.
- 4. Environmental Engineering. HS Peavy, RR Donald, and G Tchobanoglous (2017). McGraw-Hill Int. Singapore.

		Conti	nuous I	earnin	g Asses	sments	(50%)	-		End	
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		Mid-2 (15%))	Semester Exam (50%)	
	Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Laural 1 Remember		60%		40%		20%		40%		40%	
Level I	Understand	00 /0	-	40 /0	-	20 /0	-	40 /0	-		-
Lovel 2	Apply	40%		40%		60%		40%		40%	
Level 2	Analyse		-		-		-		-		
Laval 2	Evaluate										
Level 3 Create		-	-	-	-		-	-	-		
Total		10	0%	10	0%	10	0%	100%		100%	

Learning Assessment

Course Designer and Co-ordinator

Dr Pankaj Pathak, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Environmental Laboratory - I

Course Code	EVS 504	Course Category	СС	L-T-P-C	3 0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)			
Course Offering Department	Environmental Science and	Professional / Licensing Standards					
	Engineering						

Course Objectives

- 1. Develop the field-based knowledge and skills for a wider exposure of students, which is prerequisite for understanding the structural and functional aspects of ecosystems.
- 2. Provide field knowledge, sampling skills, field sample collection, labelling, carrying procedures from field to laboratory
- 3. Provide students with a clear understanding on lab analysis, data interpretation and report preparation.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Describe the basics of the structural and functional aspects of ecosystems.	1	70%	70%
2	Discuss practical and analytical techniques for test size, structure & population dynamics in ecosystems	2	80%	70%
3	Discover fieldwork components and acquire a wider exposure of the field conditions.	3	80%	70%
4	Demonstrate a wider understanding of both field and lab components.	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

CLOs		Program Learning Outcomes (PLO)													
	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	1 OSA	PSO 2	E OSA
Outcome 1	1	1	-	1	-	-	3	2	1	2	-	1	1	1	1
Outcome 2	1	1	-	1	-	-	3	2	1	2	I	1	1	1	1
Outcome 3	1	1	-	1	1	-	3	2	1	2	-	1	1	1	1
Outcome 4	-	1	-	-	-	-	-	2	-	2	-	1	1	1	1
Course Average	1	1	-	1	1	-	3	2	1	2	-	1	1	1	1

Course Unitization Plan

-		D	AT 0	D 0
Exp. No.	Experiment Name	Required Contact Hours	CLOs Addressed	References Used
1	Estimation of population size by quadrat method.	2	1	
2	To determine the density, basal area of forest/grassland ecosystems.	2	2,3	
3	To study the plant diversity of Andhra Pradesh and other southern states.	2	1	
4	To study the plant population structure in a forest/grassland stand.	2	3	
5	To analyze the plant functional traits: leaf area index, wood density, height etc.	2	1	
6	Estimation of belowground fine root biomass and carbon in forest/grassland ecosystems.	2	3	
7	Assessment of disturbance in different ecosystems.	2	2	
8	To determine the litter accumulation and collection of samples in a forest stand.	2	1	
9	Estimation of biomass and carbon stocks of forest/grassland stands by allometric model.	2	3	
10	To determine the growth of trees through increment model.	2	2	
11	Estimation of primary, secondary, and net primary productivity (NPP) of different ecosystems.	3	3	
12	Invasive species and their distribution in various ecosystems	3	1	
13	A study on the microbial diversity in soils of forest/grassland/aquatic ecosystems	3	1	
14	Techniques and methods for the collection of soil samples by soil core sampler	3	3	
15	To determine the colour, bulk density, porosity, and texture of soil	4	2	
16	To determine the pH, C, N, P & K in soil samples	3	3	
17	Field trip to protected (National parks, Biosphere reserves, sanctuary etc.) and un- protected areas and waterbodies for data collection and report preparation.	6	3	
	Total Hours	45		

1

Learning Assessment

Bloom's Level of Cognitive Task			Contin								
		CLA-1 (10%)		CLA-2 (10%)		Mid Term 1 (15%)		CLA 3 (15%)		End Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	-	20%	-	30%	-	20%	-	20%	-	40%
1	Understand	-	30%	-	30%	-	50%	-	40%	-	30%
Level	Apply	-	50%	-	40%	-	50%	-	40%	-	30%
2	Analyse	-	-	-	-	-	-	-	-	-	
Level 3	Evaluate	-		-	-	-	-	-	-	-	
	Create	-		-	-	-	-	-	-	-	
Total		-	100%	-	100%	-	100%	-	-	-	100%

Course Designer

Dr. Javid Ahmad Dar, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Data Science for Begin	ners					
Course Code	FIC501	Course Category	FIC	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Mathematics	Professional / Licensing Standards						

Data Saia -:

Course Objectives

After completing this course, students will fully grasp different data types and representations. 1.

Also, they have a basic understanding of descriptive statistics for the given datasets.

- 2. Students will understand linear algebra concepts well, enabling them to manipulate vectors and matrices and solve linear systems efficiently.
- 3. Upon completing the course, students will be proficient in applying probability principles and conducting statistical inference, including point estimation, confidence intervals, and hypothesis testing for various scenarios.
- 4. Equip the Students with the knowledge and skills necessary to apply regression techniques for modelling numerical outcomes and logistic regression for classification tasks, both for numerical and categorical data

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Explain the different types of data and graphical representation of data.	2	70%	65%
2	Compute descriptive statistics for any given dataset, such as different measures of central tendency and variation in the data.	3	70%	65%
3	Interpret different definitions of probability and the different types of random variables. Illustrate the application of the central limit theorem. Draw inferences about the population parameters.	3	70%	65%

Course Outcome (COs)

70%

2

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

	Program Learning Outcomes (PLO)														
CLOs	Scientific and Disciplinary Knowledge	Analytical Reasoning and	Critical and Reflective Thinking	Scientific Reasoning and Design Thinking	Research Related Skills	Modern Tools and ICT Usage	Environment and Sustainability	Moral, Multicultural and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Leadership Readiness Skills	Self-Directed and Life Long Learning	1 OSd	PSO 2	PSO 3
Outcome 1	2	3	2	2	1	-	-	-	-	-	-	-	-	-	-
Outcome 2	1	2	2	2	1	-	-	-	-	-	-	-	-	-	-
Outcome 3	2	2	1	1	1	-	-	-	-	-	-	-	-	-	-
Outcome 4	2	2	2	1	2	-	-	-	-	-	-	-	-	-	-
Course Average	2	2	2	1	1	-	-	-	-	-	-	-	-	-	-

Course Unitization Plan

4

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addres sed	Refer ences Used
Unit No.	Introduction to data, data structures	1	1	1,3
1	Variables and Basic data collection techniques	1	1	1,3
	Summarizing data, Descriptive Statistics	2	1,2	1,3
	Graphics, Histograms, and Popular database software.	2	1,2	1,3
	A glimpse inside the mind of a data scientist	1	1	1,3
	Discussion and Tutorial	2	1	1,3
Unit No.	Introduction to Vectors, matrices and linear systems,	1	4	1,2
2	Solving systems of Linear Equations. Consistency, transpose, determinants, inverses, trace,	1	4	2
	Vector space, subspaces,	1	4	2
	Independence of vectors, basis and dimension, dot product, inner product, Eigenvalues and Eigenvectors.	2	4	1,2
				RM ERSITY AP —Andhra Pradesh
---------------	---	---	-----	------------------------------------
	Dot product, inner product and its application	2	4	2
	Eigenvalues and Eigenvectors.	1	4	2
	Discussion on Practical applications of vector spaces and Matrices.	2	2,4	1,2,4
Unit No.	Basic principles of probability, Different approaches for defining the probability.	1	3	1,3
3	Random variables, Types of random Variables and their distribution.	1	3	1,3
	The Binomial, Normal and other popular distributions.	1	3	1,3
	Foundations for Statistical inference, Point and Interval Estimates.	1	3	1,3
	Discussion and Tutorial	1		1,3
	General ideas for statistical inference in estimating the population proportion, Central Limit theorem and its application.	2	3	1,3
	Inference for proportions and tables using the normal and chi- square distributions.	1	3	1,3
	Inference for categorical data,	1	3	1,3
	Inference for one or two samples means using the t-distribution, statistical power for comparing two groups	2	3	1,3
	Tutorial	1	3	1,3,4
Unit No. 4	Introduction to Correlation Analysis, Correlation coefficient for Categorical and Continuous data.	2	4	1,4
	Introduction to linear regression, Scatter Plot.	1	4	1,4
	Regression for a numerical outcome with one predictor Variable,	2	4	1,4
	Brief Discussion about Model Adequacy, accuracy, and validation.	2	4	1,3,4
	Regression for numerical and categorical data using many Predictors,	1	4	1,4

	Logistic regression for classification,	2	4	1,4
	Tutorial and Doubt Clearing Session	1	4	1,4
Unit No. 5	Practical applications of Regression and Classification in prediction and forecasting	2	4	1,4
	Tutorial	1	4	1,4

Bloo	m's Level of		Conti	nuous L	earnin	g Assess	sments	(50%)		End	
Cog	Cognitive Task		CLA-1 (10%)		Mid-term (20%)		CLA-2 (10%)		(10%)	Seme Exam (ester (50%)
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	30%		25%		30%		20%		20%	
1	1 Understand			25%		30%		20%		30%	
Level	Apply	20%		25%		20%		30%		25%	
2	Analyse	20%		25%		20%		30%		25%	
Level	Evaluate										
3 Create											
	Total			100%		100%		100%		100%	

Recommended Resources:

1. Openintro Statistics (4th edition), Diez David M Christopher D Barr and Çetinkaya, 2019.

2. Linear Algebra and its Applications, Gilbert Strang, Publisher Cengage India Private Limited, 2005.

3. First Course in Probability (11th Edition), Sheldon Ross, Academic Press, 2014.

Name of the Course

Course Code	SEC105	Course Category	Foundation Course (FC)	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)	Nil	Co-Requisite Course(s)	Nil	Progressive Course(s)				
Course Offering Department		Professional / Licensing Standards	\$					

Course Objectives

- 1. Provide a comprehensive overview of the significance, purpose, and types of research, both basic and applied.
- 2. Instruct students on the steps involved in conducting a literature survey and designing a robust research methodology.
- 3. Emphasize the importance of key ethical principles in research, including honesty, integrity, and transparency.

Course Outcome (COs)

CO's	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Remember the basic concepts of research design and methods, including the definition, significance, purpose, and types of research	2	85%	80%
2	Explain the process of developing clear and focused research questions and hypotheses	3	80%	75%
3	Utilize reference management tools and bibliographic techniques to organize research sources effectively.	4	80%	75%
4	Apply knowledge of research methodology and ethical principles to conduct literature surveys, and design research studies.	4	75%	70%

					Pı	rogram	Learn	ing Ou	tcome	6 (PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	3	2	3		3	2	3	3	3		2	1	3
Outcome 2	2	1	2	2	1		2	2	1	2	3		3	2	2
Outcome 3	3	3	3	3	2		2	1	2	2	1		1	3	1
Outcome 4	3	3	3	3	2		2	1	2	2	1		1	3	1
Course Average	3	2	3	2	2		2	2	2	2	2		2	2	2

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	Reference s Used
Unit	Introduction to Research Design and Methods	10	1	1,2
No. 1	Overview of research: Definition, significance, purpose, and types.	4		
	Types of Research: Basic and applied research.	4		
	Google scholar, ResearchGate, Citations, h-index, i10 index Bibliography, Reference manager	2		
Unit	Formulating Research Questions and Hypotheses	10	2	1,3
No. 2	Developing clear and focused research questions	2		
	Literature survey, various sources of research information	2		
	Methodology of research	2		
	Importance of research design	2		
	Steps in conducting research	2		
Unit	Introduction to scientific ethics	10	3	1,2,3
No. 3	Key ethical principles: Honesty, integrity, transparency.	4		
	The role of ethics in experimental design	2		
	Ethical considerations in data collection and analysis.	2		
	Human and animal research ethics.	2		
Unit	Report your findings	10	3	1,2,3
No. 4	Writing reports, Structuring reports	2		
	Writing journal articles,	3		
	Writing research proposals	3		
	Producing oral presentations	2		
Total Co	ontact Hours		45	

Learning Assessment

			Conti	i <mark>nuous L</mark>	earnin	g Assess	ments	(50%)		End	
Bloom Cog	m's Level of nitive Task	CLA (10°	A-1 ‰)	CLA-2 (10%)		CLA (15%	∧-3 ∕₀)	Mid Term (15%)		Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	20%		20%		20%		20%		20%	
1	Understand	20%		20%		20%		20%		20%	
Level	Apply	40%		40%		40%		40%		40%	
2	Analyse	10%		10%		10%		10%		10%	
Level	Evaluate	10%		10%		10%		10%		10%	
3 Create											
Total		100%		100%		100%		100%		100%	

Recommended Resources

- 1. Bordens K.S. and Abbott, B.b.: Research Design and Methods, Mc Graw Hill, 2008.
- 2. John W. Creswell and J. David Creswell Research Design: Qualitative, Quantitative, and Mixed Methods Approaches" SAGE Publications, 2017
- 3. Wayne C. Booth, Gregory G. Colomb, Joseph M. Williams, Joseph Bizup and William T. FitzGerald, The Craft of Research, Fourth Edition, University of Chicago Press, 2016

		0,2	01	7	
Course Code	EVS 551	Course Category	CE	L-T-P-C	2 1 0 3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)	
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards			

Introduction to Limnology and Oceanography

Course Objectives

- 1. Provide fundamental understanding on the distribution and physical, chemical, and biological characteristics of freshwater aquatic systems.
- 2. To understand consequences of climate change and anthropogenic perturbations on carbon and nutrient dynamics of freshwater aquatic systems.
- 3. Provide fundamental understanding on physical, chemical, and biological characteristics of marine environment.
- 4. To understand consequences of climate change and anthropogenic perturbations on oceanic environments.

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Summarise the global distribution and functioning and various chemical constituents of freshwater ecosystems.	1	80%	70%
2	Explain the origin and physical, chemical, and biological characteristics of ocean and its significance in maintaining the earth's climate.	2	80%	70%
3	Analyse the importance of biogeochemistry of freshwater systems and potential impacts of human perturbations on carbon and nutrient cycling.	3	80%	70%
4	Examine the ongoing environmental and climatic changes and their consequence in global ocean.	3	80%	70%

Course Outcome (COs)

					Pı	ogram	Learni	ng Ou	tcomes	(PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	-	1	-	2	1	1	3	3	1	1	1	1	1	2	-
Outcome 2	-	1	-	2	1	1	3	3	1	1	1	1	1	2	-
Outcome 3	-	1	-	2	1	2	3	3	1	2	1	1	1	2	2
Outcome 4	-	1	-	2	1	2	3	3	1	2	1	1	1	2	2
Course Average	-	1	-	2	1	1.5	3	3	1	1.5	1	1	1	2	2

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Introduction to the science of freshwater systems (Limnology)	9		
	Limnology as a Discipline	1	1	1,2
	Origin, abundance, and size distribution of lakes, ponds, impoundments;	2	1	1,2
	Morphology and Zonation	1	1	1,2
Unit No. 1	Temperature, stratification, and light in lakes;	1	1	1,2
	Hydrodynamics & mixing	1	1	1,2
	Lakes and reservoirs of Asia	1	1	1,2
	Formation, diversity and distribution of rivers and streams	1	1	1,2
	Wetlands and its global significance	1	1	1,2
	Aquatic Chemistry	8		
	Chemicals in freshwater	1	1,3	1,2
	Redox Potential	1	1,3	1,2
	Potential Energy, and Chemical Transformations	1	1,3	1,2
Unit No. 2	Oxygen: Forms and Transformations	1	1,3	1,2
	Photosynthesis; Respiration	1	1,3	1,2
	Metabolic Balance of Photosynthesis and Respiration	1	1,3	1,2
	Temperature Effects on photosynthesis and respiration	1	1,3	1,2
	Controls of distribution of Oxygen in the aquatic Environment	1	1,3	1,2
	Freshwater aquatic ecosystem's response to global environmental changes	6		
Unit No.	Biogeochemistry of inland waters and global carbon cycling	1	3	1,2
	Climate change: Impact & response of freshwater aquatic ecosystems	1	3	1,2

	Human alteration of inland water carbon cycling - overview	1	3	1,2
	Eutrophication, Pollution, flow diversion (dams) and their impacts on carbon cycling	2	3	1,2
	Landscape change impact on aquatic carbon processing	1	3	1,2
	Fundamentals of ocean	9		
	Earth: an ocean world	1	2	3,4
	Age of earth and ocean	1	2	3,4
	Life originated in the ocean.	1	2	3,4
Unit No.	Oceanic basins and seabed	1	2	3,4
4	Sediments and palaeoceanography.	1	2	3,4
	Water molecule and its thermal properties: Seawater and pure water	1	2	3,4
	Temperature, density, and light profiles of the oceanic water column	1	2	3,4
	Stratification of the oceanic water column	1	2	3,4
	Global temperature modulation by seawater	1	2	3,4
	Ocean physical, chemical, biological properties and climate interactions	13		
	Salinity and composition of seawater; Conservative and non- conservative behaviour of seawater constituent	1	4	3,4
	Dissolved gases in seawater	1	4	3,4
	Oceanic pH	1	4	3,4
Unit No.	Temperature, light, and nutrients	1	4	3,4
5	Phytoplankton, photosynthesis & measuring primary productivity;	1	4	3,4
	Iron and Nitrogen limitation;	1	4	3,4
	Pelagic and benthic communities;	1	4	3,4
	Size classification of organisms (pico, nano, micro, meso);	1	4	3,4
	Marine virus, bacteria, and cyanobacteria, and chemosynthesis	1	4	3,4

	Ocean and atmosphere interaction;	1	4	3,4
	Atmospheric circulation and wind pattern, Wind patterns and monsoon	1	4	3,4
	El Niño, La Niña; tropical cyclones;	1	4	3,4
	Upwelling and thermohaline circulation	1	4	3,4
Total	Hours	45		

			Contin	uous L	earnin	g Asse	ssment	s (50%)	End Se	mostor
Bloo Cog	Bloom's Level of Cognitive Task		CLA-1 (10%)		CLA-2 (10%)		CLA-3 (15%)		Term 5%)	Exam (50%)	
			Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	10	-	-	-		-	10	-	10	-
1	Understand	20	-	30	-	20	-	30	-	20	-
Level	Apply	70	-	70	-	80	-	60	-	70	-
2	Analyse	-	-	-	-	-	-	-	-	-	-
Level	Evaluate	-	-	-	-	-	-	-	-	-	-
3	Create	-	-	-	-	-	-	-	-	-	-
	Total		-	100	-	100	-	100	-	100	-

Recommended Resources

- 1. Wetzel's Limnology, Lake and River Ecosystems, 4th Edition, Edited by Jones, I.D., Smol, J.P (2023), Academic Press, ISBN: 978-0-12-822701-5
- 2. Encyclopaedia of Inland waters. Likens G.E. (2009). Academic Press, ISBN: 978-0-12-370626-3
- 3. Oceanography: An Invitation to Marine Science, 9th Edition. Garrison, T and Ellis. R (2016). ISBN-13: 978-1-305-10516-4.
- 4. Introduction to Marine Biology, 3rd Edition. Karleskint, G. Jr., Turner, R., Small, J.W. Jr. (2010). ISBN-13: 978-0-495-56197-2

Course designer

Dr. Kousik Das, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Freshwater Resources

Course Code	EVS 567	Course Category	CE	L-T-P-C	2	1	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards						

Course Objectives

- 1. Aims to provide an overview on unique characteristics of freshwater, its distribution in Earth, and explain natural cycle of water.
- 2. To understand how conflict arise over freshwater and explain the challenges of water management
- 3. Understand central role of humans in global water cycle.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Define several terminologies related to freshwater resources and understand water cycle	1	80%	70%
2	Able to understand how climate change and human activities affect water cycle	2	80%	70%
3	Asses the magnitude, variability and quality of surface water and ground water	3	80%	70%
4	Apply the management of drinking water and wastewater and water economies	4	80%	70%

					Pr	ogram	Learn	ing Ou	tcome	s (PLO)				
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural Skills	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and Finance	Self-Directed and Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	-	-	-	-	-	1	3	3	1	1	-	1	1	1	-
Outcome 2	-	2	1	1	1	1	3	3	1	1	-	2	2	2	1
Outcome 3	-	1	1	1	1	1	3	3	1	1	-	2	2	2	1
Outcome 4	-	2	1	1	1	1	3	3	1	1	-	2	2	2	2
Course Average	-	1.67	1	1	1	1	3	3	1	1	-	1.75	1.75	1.75	1.33

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Freshwater Resources and Water cycle	8		
	Our freshwater resources – an overview	1	1	1,3
	Water cycle and drivers of global change in freshwater resources	1	1	1, 3
Unit No.	State of ground water	1	1	1, 3
	State of rivers and lakes.	2	1	1,3
	Water and society; Changing water cycle.	1	1	1,3
	Changing water cycle – Anthropogenic and Climatic influences	2	1	1,3
	State of Groundwater, rivers, and lakes	10		
	State of aquifers	1	2,3	1,3
	Groundwater recharge abstraction, and injection	2	2,3	1,3
Unit No. 2	Groundwater movements and chemical constitutes.	2	2,3	1,3
	Rivers, lakes and their state	2	2,3	1,3
	Oxygen depletion, algal blooms	2	2,3	1,3
	Changes in volume reduction of lakes and rivers	1	2,3	1,3
	Water Demands: Agricultural and Energy	8		
	Water demands for agriculture	1	3	1
Unit	Minimizing the farming water needs	2	3	1
3	Efficient irrigation, boosting yields	1	3	1
	Trading for smart water use (virtual water)	2	3	1
	Energy and water demand.	2	3	1
Unit	Climate change and water	8		
4	Water as the centre of climate change	2	3,4	1

	Water-related hazards; Floods and draughts, storms, Glaciers snow cover, sea-level rise	3	3,4	1
	Changing patterns of rainfall	1	3,4	1
	Changing water availability- shifting ecosystems	2	3,4	1
	Water scarcity, Conflicts, and the future	11		
	Who owns water	1	4	1,2
	Water privatization and discontents	2	4	1,2
Unit	Freshwater reservoirs (Dams)	1	4	1,2
5	Bulk water transfer	1	4	1,2
	Water conflicts and their relationship with water access	2	4	1,2
	Water rights, international laws and institutions dealing with transboundary water conflicts	3	4	1,2
	Water footprint	1	4	1,2
	Total Hours	45		

		Continuous Learning Assessments (50%))	End Semester		
Bloo Cog	m's Level of nitive Task	CLA-1 CLA-2 CLA-3 N (10%) (10%) (15%)		CLA-2 CI (10%) (1		CLA-3 (15%)		Mid (15	Term 5%)	End Se	(50%)	
			Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	20%	-	-	-	-	-	30%	-	10%	-	
1	Understand	30%	-	30%	-	20%	-	30%	-	20%	-	
Level	Apply	30%	-	40%	-	50%	-	20%	-	40%	-	
2	Analyse	20%	-	30%	-	30%	-	20%	-	30%	-	
Level	Evaluate	-	-	-	-	-	-	-	-	-	-	
3	Create	-	-	-	-	-	-	-	-	-	-	
	Total		-	100	-	100	-	100	-	100	-	

Recommended Resources

- 1. Back to the well Rethinking the future of water. Marq de villiers (2018). ISBN: 9781773100463.
- Water law in India Introduction to Legal Instruments. Cullet and Koonan (2018). Oxford University press; ISBN-13: 9780199472475
- 3. Water Resources an integrated approach. Joseph Holden (2014) Routledge Taylor and Francis. ISBN: 978-0-415-60282-2

Course designer

Dr. Shoji D Thottahil, Assistant Professor, Environmental Science and Engineering, SRM University-AP

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Wastewater Treatment													
Course Code	EVS 553	Course Category	CE	L-T-P-C	2	1	0	3						
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-									
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards	-											

Course Objectives

- 1. To understand the concept of wastewater treatment using physico-chemical and biological methods.
- 2. Discuss advanced concepts of wastewater treatment.
- **3.** To design STP/CEPT's, operational conditions and cost analysis.

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Explain different wastewaters and its characteristics with collection practices.	2	80%	70%
Outcome 2	Understand basic and advanced treatment methods.	2	80%	70%
Outcome 3	Classify physico-chemical and biological treatment processes	2	80%	70%
Outcome 4	Design of a STP/CEPT including operation and cost analysis.	3	80%	70%

CLOs	Prog	ram	Lea	rning	g Out	tcomes	s (PLC))							
	En gin eeri ng Kn owl edg e	Pr o bl e m A na ly si s	D es ig n an d D ev el o p m en t	A na ly si s, D es ig n an d R es ea rc h	M o de rn T o ol an d I C T U sa ge	Soc iety and Mu ltic ultu ral Ski lls	En vir on me nt and Sus tain abil ity	M or al , an d Et hi ca l A w ar en es s	In di vi d ua l an d T ea m w or k S ki lls	C o m u ni ca ti o n S ki lls	Pro ject Ma ang em ent and Fin anc e	Sel f- Dir ect ed and Lif e Lo ng Lea rni ng	P S O 1	P S O 2	P S O 3
Outcome 1	-	3	-	2	-	2	2	3	2	-	3	-	2	3	3
Outcome 2	1	2	2	1	-	-	1	-	2	-	-	-	1	2	1
Outcome 3	1	1	1	1	-	2	1	-	3	-	-	-	1	1	1
Outcome 4	1	1	1	1	-	2	1	-	3	-	-	-	1	1	1

|--|

IInit		Required	CLOs	Deference
No	Unit Name	learning	Addres	s Used
140.		Hours	sed	3 0300
Unit 1	Fundamental and overview	9	1,2	1, 2
	Wastewater characteristics - wastewater management in	2	12	1.2
	India	2		1, 2
	Wastewater collection and systems design	1	1,2	1, 2
	Factor involved in waste treatment methods	2	1,2	1, 2
	Introduction to microbial metabolism	2	1,2	1, 2
	Microbial growth - modelling suspended growth treatment	2	12	1 2
	process	2	1,2	1, 2
Unit 2	Basic treatment processes	9	1,2	1, 2
	Types of processes & reactors – mass balance – reactions and mechanisms	2	1,2	1, 2
	Mass transfer	1	1,2	1, 2
	Optimization of a treatment process	2	1,2	1, 2
	Aerobic biological oxidation – nitrification – denitrification	2	1,2	1, 2
	Biological phosphorus removal	1	1,2	1, 2
	Anaerobic fermentation and oxidation	1	1,2	1, 2
Unit 3	Advanced treatment systems	9	2,4	1, 2
	Membrane filtration – types & process	2	2,4	1, 2
	Adsorption	1	2,4	1, 2
	Gas stripping – ion exchange – distillation –	2	2,4	1, 2
	Suspended & attached growth biological processes	2	2,4	1, 2
	Process analysis - nitrogen removal - phosphorus removal	2	2,4	1, 2
Unit 4	Water reuse and sludge management	9	1,2,3	1, 2
	Sludge thickening	1	1,2,3	1, 2
	Anaerobic digestion	2	1,2,3	1, 2
	Drying beds – settling tanks – sludge dewatering	2	1,2,3	1, 2
	Sludge disposal - water reclamation technologies	2	1,2,3	1, 2
	Reusing wastewater	2	1,2,3	1, 2
Unit 5	Designing of treatment plants	9	3,4	1, 2
	Overall planning	1	3,4	1, 2
	plant design – STP & CEPT	2	3,4	1, 2
	Commissioning	2	3,4	1, 2
	Operation of plant	2	3,4	1, 2
	Cost analysis	2	3,4	1, 2
	Total learning hours	45		

Recommended Resources

- 1. Wastewater Engineering Treatment and Reuse, 4th edition, Metcalf and Eddy (2017). McGraw Hill Education. ISBN 978-0-0704-9539-5.
- 2. Wastewater Treatment for Pollution Control and Reuse, 3rd edition, Arceivala and Asolekar (2006). Mc Graw hill Education. ISBN 978-0-0706-2099-5.

Bloom's Level of Cognitive Task		Continu	Continuous Learning Assessments (50%)								
		CLA-1 (10%)		CLA-2 (10%)		CLA-3 (15%)		Mid-1 (15%)		Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	20%		20%		20%		20%		60%	
1	Understand	30 %	-	30 %	-	30 %	-	30 %	-	00 /0	-
Level	Apply	70%		70%		70%		70%		40%	
2	Analyse	70%	-	70 /0	-	70%	-	70 %	-	40 /0	-
Level	Evaluate	-	-	-	-	-	-	-	-	-	-
3 Create		-	-	-	-	-	-	-	-	-	-
Total		100%		100%		100%		100%		100%	

Course Designer Dr. Karthik Rajendran, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Solid Waste Management												
Course Code	EVS 552	Course Category	CE	L-T-P-C	2	1	0	3					
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-								
Course Offering Department	Environmenta l Science and Engineering	Professional / Licensing Standards	-										

Course Objectives

- **1.** Aims to identify different types of solid waste and issues associated with them.
- 2. To understand numerous approaches for sustainable management of solid waste.

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course, the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand the types of solid waste and associated environmental and health impacts.	2	80%	75%
Outcome 2	Understand the processing of non- hazardous solid waste and its treatment process.	2	80%	75%
Outcome 3	Apply sustainable solutions for the treatment of hazardous solid waste.	3	80%	75%
Outcome 4	Explain national and international laws of solid waste management.	2	80%	75%

	Pro	gram	Lear	ning	Outc	omes	(PLC))							
CLOs	En gi ne eri ng K no wl ed ge	Pr ob le m A na lys is	De sig n an d De ve lo p m en t	A na lys is, De sig n an d Re se ar ch	M od er n To ol an d IC T Us ag e	So cie ty an d M ult ic ult ur al Sk ill s	En vir on m en t an d Su sta in ab ilit y	M or al, an d Et hi cal A wa re ne ss	In di vi du al an d Te a m w or k Sk ill s	Co m un ica tio n Sk ill s	Proj ect Man age men t and Fina nce	Self - Dir ecte d and Life Lon g Lea rnin g	PS O 1	P S O 2	P S O 3
Outcome 1	-	-	-	-	-	-	2	-	-	-	-	-	3	3	3
Outcome 2	1	1	-	-	1	1	3	1	2	2	-	1	3	3	3

Outcome 3	1	1	-	-	1	1	3	1	2	2	-	1	3	3	3
Outcome 4	1	-	-	-	-	-	1	1	-	-	-	1	3	3	3
Course Average	1	1	-	-	1	1	2. 25	1	2	2	-	1	3	3	3

-

Unit	Unit Name	Require d	CLOs Addr	Refe rences
No.		Contact Hours	e ssed	Used
Unit 1	Waste Management	9		
	Introduction to solid waste, classification, sources,	2	1	1, 2
	characteristics	2		
	Impact of improper waste disposal on environment	1	1	12
	and health	1	1	1, 2
	Generation of waste, waste minimization, recycling,			
	collection and segregation of waste, transfer and	3	1,2	1,2
	transport, storage, e- waste.			
	Quantifying the different types of solid waste at	3	1	12
	university campus	5	1	1,2
Unit 2	Processing technologies for Municipal Solid Waste Management & Plastic Management	10	1,2	2,3
	Volume reduction, energy generation, resource			
	recovery, composting processes, windrow	2	1,2	2,3
	composting,			
	Vermicomposting, biogas technology, floating drum	1	12	23
	model, fixed dome model,	1	1,2	2,5
	Recycling, incineration and other thermal processes,	1	12	23
	refuse-derived fuel	1	1,2	2,5
	Landfills, sanitary landfills, selection criteria of a			
	landfill, metabolism of landfill, leachate, landfill gas	3	1,2	2,3
	recovery, post-closure plan.		-	
	Plastics waste management: Processing and treatment	3	2	2,3
Unit 3	Hazardous Waste	12	2,3,4	1,2,3
	Identification of hazardous waste, generation,			
	physical and chemical properties, characteristics test,	3	2,3,4	1,2,3,4
	segregation and transport of hazardous waste			
	Management and hazardous waste handing rules,	3	2,3,4	1,2,3,4
	agro and mine waste management, ocean dumping.			
	International Convention and their Transboundary	2	2,3,4	1,2,3,4
	Novement of Hazardous Wastes and their Disposal			
	International Convention on the Prior Informed	1	2,3,4	1,2,3,4
	Consent. Drogodung for Cortain Hazandous Chamicals and			
	Procedure for Certain Hazardous Chemicals and	2	224	1 2 2 4
	on chemical and hazardous waste management	3	2,3,4	1,2,3,4
Unit 4	Biomodical Waste Management	8	23	231
	Classification generation impact on onvironment	2	2,5	2,3,4
	Collection segregation transport	2	2,4	2,4
	Hazardous waste landfill reduction of waste	2	2,4	2,4 1
	riazaruous waste ianunii, reduction of waste	2	2,3,4	4

	Captive bio-medical waste treatment and disposal facility	2	2,3,4	4
Unit 5	Solid Waste Rules	6	2,3,4	1,2,3
	National and International laws on municipal solid waste municipal solid waste, e-waste	3	1,2	1,2,3
	National and International laws on plastic wastes	2	1,2	1,2,3
	National and International laws on biomedical waste	1	2,3,4	2,3,4
	Total	45		

Recommended Resources:

- 1. Hazardous and Other Wastes (Management and Transboundary Movement) Amendment Rules (2022), https://cpcb.nic.in/uploads/hwmd/HOWM-Sixth-Amendment-Rules-2022.pdf.
- 2. Urban Mining for Waste Management and Resource Recovery: Sustainable Approaches, CRC Press, Taylor & Francis by P. Pathak, Prangya Rout, CRC Press, (2021).
- 3. Sustainable Solid Waste Management, Edited by Jonathan W. C. Wong; Rao Y. Surampalli; Tian C. Zhang; Rajeshwar D. Tyagi; and Ammaiyappan Selvam, ASCE (2016).
- Guidelines for Management of Healthcare Waste as per Biomedical Waste Management Rules (2016), https://cpcb.nic.in/uploads/Projects/Bio-Medical-Waste/Guidelines_healthcare_June_2018.pdf.

Recommended Online Resources:

- 1. <u>https://cpcb.nic.in/status-of-implementation-of-solid-waste-rules/</u>
- 2. www.niti.gov.in/sites/default/files/2021-12/Waste-Wise-Cities.pdf.

		Continuous Learning Assessments (50%)								End Somostor		
Bloom's Level of		CLA-1		Mid-1		CLA-2		Mid-2		Ella So Evom	(50%)	
Cognitive	e Task	(10%)		(15%)		(10%)		(15%)		Exam (3070)		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
	Remember											
Level 1	Understand	60%	-	50%	-	50%	-	30%	-	50%	-	
Laval 2	Apply	40%	-	50%	-	50%	-	70%	-	50%		
Level 2	Analyse	-	-	-	-	-	-	-	-	-		
Lovol 3	Evaluate	-	-	-	-	-	-	-	-	-	-	
Create		-	-	-	-	-	-	-	-	-	-	
Total		100%		100%		100%		100%		100%		

Learning Assessment

Course Designer

Dr Pankaj Pathak, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Carbon Sequestration											
Course Code	OEC 104	Course	CE	ITPC	n	1	0	2			
Course Coue	OEC 104	Category	CE	L-1-1-C	2	T	0	3			
Pre-Requisite	NI;1	Co-Requisite	NI;1	Progressive		N	:1				
Course(s)	INII	Course(s)	INII	Course(s)		IN	11				
Course	Environmental	Professional /		·							
Offering	Science and	Licensing									
Department	Engineering	Standards									

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Aim to understand the role of different ecosystems in carbon sequestration. **Objective 2:** To understand its role in climate change mitigation and adaptation across ecosystems.

Objective 3: To learn Nature-based Solutions (NBS) through ecosystem restoration.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe Nature-based Solutions (NBS)	2	80%	70%
Outcome 2	Demonstrate the role of NBS in biodiversity enhancement and ecosystems services	2	80%	70%
Outcome 3	Evaluate the carbon sequestration of given ecosystem through restoration.	4	70%	60%
Outcome 4	Compare the effectiveness of NBS strategies to alternative non-NBS strategies.	3	70%	60%

Course Articulation Matrix (CLO) to (PLO)

					Pr	ogram 1	Learnin	g Outo	comes (l	PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management &	Self-Directed & Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	2	-	2	1	2	3	1	2	1	-	1	-	-	-
Outcome 2	2	2	-	2	1	2	3	1	2	1	-	1	-	-	-
Outcome 3	2	2	-	2	1	2	3	1	2	1	-	1	-	-	-

Outcome 4	2	2	-	2	1	2	3	1	2	1	-	1	-	-	-
Course Average	2	2	-	2	1	2	3	1	2	1	-	1	-	-	-

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
	Nature-Based Solutions	8	1	1,2,3
	Definition, overview, multifunctionality and the concept of Nature-Based Solutions (NBS)	2	1	1,2,3
Unit	Types, challenges and goals, classification of NBS	2	1	1,2,3
110.1	Context and rationale, Scope and limitations. Process and methods of NBS	2	1	1,2,3
	Global Carbon Cycle. Fast and slow carbon cycles. Carbon neutrality vs net zero Emission; Geological carbon sequestration	2	1	1,2,3
	Green Carbon	9	2,3	4,5,6,7
	Forests: Introduction, biodiversity conservation	2	2,3	4,5,6,7
Unit	The natural dynamics of carbon in forest ecosystems.	2	2,3	4,5,6,7
No. 2	Carbon dynamics and pools in major forest biomes of the world (Boreal, temperate & tropical)	4	2,3	4,5,6,7
	Importance of carbon sequestration in forests, Grasslands, Savannahs, Peatlands and agro ecosystems.	2	2,3	4,5,6,7
	Blue Carbon	10	2, 3	6,7,8
	Blue carbon: Oceans, coastal ecosystems, mangroves, freshwater and wetlands	4	2, 3	6,7,8
Unit No.3	Introduction, distribution, carbon sequestration, storage, and emissions	2	2, 3	6,7,8
	Climate change policies, investments, and tools	2	2, 3	6,7,8
	Conservation and restoration.	2	2, 3	6,7,8
	Restoration of ecosystems	8	3	7,8,9
Unit	Definition, process, carbon sequestration in restored forests, grasslands, and wetlands	3	3	7,8,9
No. 4	Biodiversity and ecosystem functioning in restored ecosystems	2	3	7,8,9
	Conservation, restoration, and management as a tool for carbon sequestration.	3	3	7,8,9
	Mitigation and adaptation strategies	10	4	10,11
Unit No.	Nature climate solutions, NDCs, United Nations Framework on Climate Change, the Kyoto Protocol and Post-Kyoto agreements	3	4	10,11
5	Contribution of Blue and Green carbon pools to climate change mitigation. Carbon	3	4	10,11

farming, carbon crediting, carbon marketing, carbon auditing			
Restoration, Biodiversity–productivity relationships: key to nature-based climate solutions	3	4	10,11
Climate change adaptation potential	1	4	10,11
Total Contact Hours		45	

Recommended Resources

- Robert C. Brears (2020). Nature-Based Solutions to 21st Century Challenges. Taylor and Francis. ISBN: 9781000047714
- Cohen-Shacham, E., Walters, G., Janzen, C. and Maginnis, S. (eds.) (2016). Naturebased Solutions to address global societal challenges. Gland, Switzerland: IUCN. xiii + 97pp. ISBN: 978-2-8317-1812-5
- Murti, R. and Sheikholeslami, D. (2021). Nature-based Solutions for recovery Opportunities, policies and measures. Technical Paper No. 2, IUCN Nature-based Recovery Initiative. Gland, Switzerland: IUCN.
- Klaus, Lorenz & Rattan, Lala (2018). Carbon Sequestration in Agricultural Ecosystems. Springer International Publishing, 1st edition, ISBN:9783319923178
- Mark, S, Aston., Mary, L., Tyrell., Deborah, Spalding & Bradford, Gentry (2011). Managing Forest Carbon in a Changing Climate. Springer, ISBN: 9789400722316
- Maxt, A. Beran (2013). Carbon Sequestration in the Biosphere. Processes and Prospectus. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG. ISBN: 9783642799457.
- Brajesh K Singh (2018). Soil Carbon Storage: Modulators, Mechanisms and Modeling. Academic Press, ISBN: 9780128127667
- Crooks, Stephen; Troxler, Tiffany G.; Windham-Myers, Lisamarie (2019). A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Practice and Policy. CRC Press, ISBN:9780429435362
- Margaret A. Palmer, Joy B. Zedler, Donald A. Falk (eds.) (2016). Foundations of Restoration Ecology. Island Press/Center for Resource Economics. ISBN: 9781610918282
- David, A.N. Ussiri & Rattan, Lal (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer, ISBN-13: 978-3319538433

 Seddon, N., Sengupta, S., García-Espinosa, M., Hauler, I., Herr, D. and Rizvi, A.R. (2019). Nature-based Solutions in Nationally Determined Contributions: Synthesis and recommendations for enhancing climate ambition and action by 2020. Gland, Switzerland and Oxford, UK: IUCN and University of Oxford. IUCN-2019-030

		Contin	uous Learnin	g Assessments	s (50%)	End
Bloom's Level of Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Semester Exam (50%)
Level	Remember	60%	60%	60%	60%	60%
1	Understand	00 /0	00 /0	00 /0	00 //	00 //
Level	Apply	40%	40%	40%	40%	40%
2	Analyse	40 /0	40 /0	40 /0	40 /0	40 /0
Level	Evaluate					
3 Create						
Total		100%	100%	100%	100%	100%

Learning Assessment (Theory)

Course Designer and Co-ordinator

Dr Javid Ahmad Dar, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Water contaminants: Sources, Transport and Remediation strategies

Course Code		Course Category	CE	L-T-P-C	2 1 0 3
Pre-Requisite		Co-Requisite		Progressive	
Course(s)	-	Course(s)		Course(s)	-
Course	Environmental	Professional /			
Offering	Science &	Licensing		-	
Department	Engineering	Standards			

Course Objectives

- 1. To understand various aspects of water contaminant sources, transport, quantification, and remediation.
- 2. To seamlessly integrate pollution and remediation theory into practice.

Course Outcomes (COs)

CO's	At the end of the course, the learner will be able to	Bloom′ s Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand different sources and types of water contaminants together with their hazardous implications	1	80%	70%
2	Identify and predict water contaminant transport mechanisms	2	80%	70%
3	Acquire knowledge in utilizing advanced analytical techniques for contaminant tracking.	2	80%	70%
4	Design, implement, and assess water contaminant remediation approaches based on adsorption phenomenon.	3	80%	70%

					Pr	ogram	Learnin	g Outo	comes (l	PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management &	Self-Directed ଝ Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	2	-	2	-	2	3	1	1	-	-	1	2	2	3
Outcome 2	1	2	-	1	-	-	3	-	-	-	-	1	2	-	1
Outcome 3	1	1	1	1	-	2	3	-	-	-	-	1	1	2	1

Outcome 4	3	3	3	3	1	2	3	-	1	-	-	2	2	2	2
Course Average	2	2	1	2	1	2	3	1	1	-	-	1	2	2	2

Unit No.	Syllabus Topics	Required Learning Hours	CLOs Addresse d	References Used
	Introduction to Water Contaminants	6	1, 2	1, 2
Unit	Definition and Significance of Water Contaminants, Overview of different water contaminants and their impacts	2	1, 2	1, 2
110.1	Impact on environmental and human health	2	1, 2	1, 2
	Key regulatory frameworks and standards	al and human health21, 2orks and standards21, 2minants41, 2opogenic sources, ces of Legacy and ants21, 2water quality and s21, 2Contaminants122, 4ntaminant transport, n Natural Systems -42, 4Porous Media, s42, 4	1, 2	
	Sources of Water Contaminants	4	1, 2	1, 2
Unit No. 2	Natural and Anthropogenic sources, Overview of the sources of Legacy and Modern water contaminants	2	1, 2	1, 2
	Dynamic nature of water quality and contaminant interactions	2	1, 2	1, 2
	Fate and Transport of Contaminants	12	2, 4	3, 4, 5
Unit	Overview, Basics of Contaminant transport, distribution, and fate in Natural Systems - Surface Flows	4	2, 4	3, 4, 5
No. 3	Unsaturated/Saturated Porous Media, Multiphase flow systems	4	2, 4	3, 4, 5
	Contaminant transport mechanisms, Advection, Dispersion, Diffusion	2	2, 4	3, 4, 5
	Contaminant transport mechanisms, Sorption, Retardation, Chemical and Abiotic Processes	2	2, 4	3, 4, 5
	Analytical Techniques for Contaminant Tracking	11	1, 3, 4	6, 7
	Overview of different analytical techniques	3	1, 3, 4	6,7
No. 4	Cutting-edge technologies in legacy contaminant's detection, analysis, and quantification	4	1, 3, 4	6,7
	Advanced technologies for detection	1	1, 3, 4	6,7
	Advanced technologies for analysis, and quantification of emerging contaminants	3	1, 3, 4	6, 7
Unit No. 5	Remediation Technologies for Water Contaminants	12	3, 4	8

Overview of remediation trend, Conventional remediation technologies	4	3, 4	8
Adsorption-based remediation methods, Advanced oxidation processes, Integrated remediation strategies	4	3, 4	8
Remediation Optimization	1	3, 4	8
Isotherms and Kinetics modeling studies	3	3, 4	8
Total Learning Hours	45		

			Contin	nuous I	earnin	g Asses	sments	5 (50%)		End		
Bloom	's Level of	CL	CLA-1		d-1	CL	A-2	Mi	d-2	Semester		
Cognitive Task		(10%)		(15%)		(10%)		(15%)		Exam (50%)		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
	Remembe											
Level 1	r	30%		20%		20%		30%		60%		
	Understan		-	30 %	-	30 %			-	00 /0	_	
	d											
T 10	Apply	700/		70.0/		70.0/		700/		40%		
Level 2	Analyse	70%	-	70%	-	70%	-	70%	-	1	-	
Lovol 2	Evaluate	-	-	-	-	-	I	I	-	1	-	
Level 5	Create	-	1	-	-	-	1	1	-	1	-	
Total		10	0%	10	0%	100%		100%		100%		

Recommended Resources:

- 1. Rao S V. (2007). An Introduction To Water Pollution. Retrieved from https://books.google.com.my/books?id=59dHlRUteEoC
- 2. Chakraborty, P., & Snow, D. (Eds.). (2022). Legacy and Emerging Contaminants in Water and Wastewater. <u>https://doi.org/10.1007/978-3-030-95443-7</u>
- 3. Schnoor, J. L. (1996). Environmental modeling: fate and transport of pollutants in water, air, and soil, 682. Retrieved from https://www.wiley.com/en-br/Environmental+Modeling%3A+Fate+and+Transport+of+Pollutants+in+Water%2C+Air%2C+and+Soil-p-9780471124368
- **4.** Dunnivant, F. M., & Anders, E. (2006). A Basic Introduction to Pollutant Fate and Transport: An Integrated Approach with Chemistry, Modeling, Risk Assessment, and Environmental Legislation. *A Basic Introduction to Pollutant Fate and Transport: An Integrated Approach with Chemistry, Modeling, Risk Assessment, and Environmental Legislation, 1–480.* https://doi.org/10.1002/0471758132
- 5. Council, N. R. (2004). Contaminants in the Subsurface: Source Zone Assessment and Remediation. *Contaminants in the Subsurface: Source Zone Assessment and Remediation*, 1–358. <u>https://doi.org/10.17226/11146</u>
- **6.** Sivasankar, B. (2012). *Instrumental methods of analysis*. N. Delhi: Oxford University Press.
- Pooja, D., Kumar, P., Singh, P., & Patil, S. (Eds.). (2020). Sensors in Water Pollutants Monitoring: Role of Material. <u>https://doi.org/10.1007/978-981-15-0671-0</u>
- 8. Bhattacharya, S., Gupta, A. B., Gupta, A., & Pandey, A. (2018). Introduction to Water Remediation: Importance and Methods. *Energy, Environment, and Sustainability*, 3–8. <u>https://doi.org/10.1007/978-981-10-7551-3_1</u>

Course Designer

Dr. Nirav P Raval, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

			01					
Course Code	EVS 505	Course Category	CC	L-T-P-C	3	1	0	4
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards						

Environmental Chemistry & Microbiology

Course Objectives

- 1. Provide students with knowledge of the chemical properties of pollutants as well as about the chemical reactions of various pollutants in the environment.
- 2. Discuss on the sources, reactions, transport, effects, and fates of various chemical species in air, water, and soil.
- 3. Provide a comprehensive understanding on the relationships of microorganism, and environmental processes as well as the role of microorganisms in regulating processes at ecosystem to global scales.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Describe the fundamentals and applied aspects of environmental chemistry.	2	80%	70%
2	Apply concepts of environmental chemistry to solve issues related to the pollution of air, water, and soil and their toxicological effects	4	80%	70%
3	Relate the physiology of microorganisms to various environmental processes	3	80%	70%
4	Connect the knowledge on microorganisms to the global biogeochemical cycles and environmental hazards	2	80%	70%

]	Prog	ram Lo	earnin	g Out	tcome	s (PLC))				
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and	Society and Multicultural Skills	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and Finance	Self-Directed and Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	-	1	-	2	-	-	3	1	2	2	-	1	2	2	1
Outcome 2	1	2	1	3	1	-	3	1	2	2	1	1	2	2	3
Outcome 3	-	2	1	2	1	-	3	1	2	2	1	1	2	3	2

Outcome 4	-	3	1	3	1	-	3	1	2	2	1	1	3	2	3
Course Average	1	2	1	2.5	1	-	3	1	2	2	1	1	2.25	2.25	2.25

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Fundamentals of Environment Chemistry	12		
	Fundamental of Environmental Chemistry	2	1,2	1
	Electrochemistry, and redox reactions	2	1,2	1
Unit No.	Gibb's energy, Chemical potential, Chemical equilibria, acid- base.	2	1,2	1
1	Reactions and Solubility product	1	1,2	1
	Solubility of gases in water Carbonate system	1	1,2	1
	Unsaturated and saturated hydrocarbons	2	1,2	1
	Source of natural and artificial radiation, Radioactive substances	2	1,2	1
	Chemistry of Air & Water	12		
	Composition of air	1	2	1
	Chemical speciation, ions and radicals in the atmosphere	1	2	1
	Acid rain, Air pollutants, and Ozone	1	2	1
Unit No.	Thermochemical and Photochemical reactions	1	2	1
2	Greenhouse gases	1	2	1
	Structure and properties of water; D.O., B.O.D., and C.O.D	1	2	1
	Redox potential, Carbonates, conductivity, alkalinity	2	2	1
	Inorganic and organic pollutants	1	2	1
	Pesticides, agricultural and industrial pollutants	1	2	1
	Emerging contaminants	2	2	1
	Soil and Geochemistry	10	2	
Unit	Physiochemical composition and organic & inorganic components of soil	2	2	1, 2
NO. 3	Stoichiometry of soil (C: N:P ratio),	2	2	1, 2
	Reaction in soil solution - Chemisorption, Chelation, Complexations	2	2	1, 2
	Trace elements and their mobility	2	2,3	1, 2
	Heavy metals (Pb, Cd, Hg, As, etc.) and biochemical aspects.	2	2,3	1, 2

	Diversity and physiology of microorganisms in environment	14		
Unit No.	Microbes and our environment	1	3	2, 3
	Prokaryotes, Eukaryotes, and Viruses.	2	3	2, 3
4	Microbial distribution in soil, water, and air.	2	3	2, 3
	Microbes in Extreme environments – Low temperature (Antarctic) and high temperature (hot springs) environments, deserts, and acid mines	2	3	2, 3
	Bacterial growth - pure and continuous culture as well as growth in natural environment	2	3	2, 3
	Microbial growth in aerobic and anaerobic conditions;	2	3	2, 3
	Carbon and energy utilization of microbes	1	3	2, 3
	Carbon, nutrients, and physiological response of microbes	2	3	2, 3
	Beneficial and hazardous microorganisms and global biogeochemical cycles	12		
	Microbial methods for metal remediation and oil spills	2	3,4	3
	Environmentally transmitted pathogens – bacteria, Parasites, Viruses,	2	3,4	3
Unit No.	Indicator microorganisms	1	3,4	3
5	Global change and microbial infectious diseases.	2	3,4	3
	Microbial transformation and biogeochemical cycles;	2	3,4	3
	Microbial metabolism and biogeochemical processes;	1	3,4	3
	Microbial contribution to climate change – CO2, CH4, N2O emission.	2	3,4	3
	Total Hours	60		

Bloom's Level of Cognitive Task		Continuous Learning Assessments (%)								Fnd Semester		
		CL (A-1 %)	CL (CLA-2		CLA-3		Mid Term		(<u>%</u>)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level 1	Remember	10	-	-	-	-	-	20	-	10	-	
	Understand	25	-	30	-	20	-	40	-	20	-	
Laval 2	Apply	40	-	50	-	20	-	20	-	40	-	
Leverz	Analyse	25	-	20	-	60	-	20	-	30	-	
Level 3	Evaluate	-	-	-	-	-	-	-	-	-	-	
	Create	-	-	-	-	-	-	-	-	-	-	
Total		100	-	100	-	100	-	100	-	100	-	

Recommended Resources

- 1. Environmental chemistry. 11th edition, Manahan, Stanley. (2017). CRC press, ISBN: 9780367558871.
- 2. Soil Microbiology and Biochemistry, 3rd Edition, Paul, E.A., Elsevier (2007). ISBN 13: 978-0-12-546807-7.
- **3.** Environmental Microbiology, 3rd Edition. Pepper, I.L., Gerba, C.P., Jentry, T.J (2015). Academic Press. ISBN: 978-0-12-394626-3. Madsen E.L., Environmental Microbiology: From Genome to Biogeochemistry, 2nd Edition. Willey Blackwell. ISBN 978-1-118-43963-0.

Course designer

Dr. Shoji D Thottahil, Assistant Professor, Department of Environmental Science and Engineering, SRM University-AP

Course co-ordinator

Dr. Deep Raj, Assistant Professor, Department of Environmental Science and Engineering, SRM University-AP

Ecology & Biodiversity

Course Code	EVS 506	Course Category	CC	L-T-P-C	3	1	0	4
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-			
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards	-					

Course Objectives

- **1.** To understand the various ecological concepts, principles and factors that determine the size and number of populations in different ecosystems.
- 2. Aim to impart the knowledge of ecology, which is crucial for better development and management of natural resources and the global environment.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand the basic principles and concepts of ecology.	1	80%	70%
2	Acquire the knowledge and skills needed for field ecology.	2	80%	70%
3	Examine the role of ecology in relation to environmental conservation and management.	3	80%	70%
4	Investigate the role of ecology and biodiversity in environmental regulation	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pr	ogram	Learni	ng Ou	tcomes	(PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	FSO 3
Outcome 1	-	1	1	2	-	1	3	1	1	-	-	1	3	3	3
Outcome 2	-	1	-	2	2	1	3	-	1	-	-	1	3	3	3
Outcome 3	-	1	-	2	2	1	3	-	1	-	-	1	3	3	3
Outcome 4	-	1	-	2	2	1	3	-	1	-	-	1	3	3	3
Course Average	-	1	1	2	2	1	3	1	1	-	-	1	3	3	3

Unit Name	Required Contact Hours	CLOs Addresse d	References Used
Fundamentals of Ecology	10		
Basic definitions, concepts, and scope:	2	1	2,4,5
Ecology, multidisciplinary nature and relevance, landscape,	2	1	2,4,5
Ecosystems, habitat, ecotones, stability, resistance and resilience,	2	1	2,4,5
Major terrestrial biomes,	2	1	2,4,5
Abiotic and biotic factors	2	1	2,4,5
Community Ecology	10	• •	
Basic concepts, community structure and organization,	2	2,3	1,3,4,5
Biomass, keystone species, ecotones and edge effects,	2	2,3	1,3,4,5
Ecological succession: primary and secondary succession, types of succession,	3	2,3	1,3,4,5
Climax community concepts.	3	2,3	1,3,4,5
Biodiversity	12		
Concept, definition and levels, diversity of flora and fauna, keystone species.	2	1,2,3,4	4,5,6,7
Biodiversity and extinctions, Biodiversity conservation strategies: in situ and ex situ Conservation,	3	1,2,3,4	4,5,6,7
Biodiversity hotspots, their characteristic flora and fauna.	2	1,2,3,4	4,5,6,7
Biodiversity indices: Shannon-Wiener index, Simpson index, similarity index, evenness index, frequency, abundance, density, relative density, diversity, biomass estimation;	3	1,2,3,4	4,5,6,7
Community diversity estimation: alpha, beta and gamma diversity.	2	1,2,3,4	4,5,6,7
Values and Threats	14		
Economic values, ecosystem services, social, aesthetic, consumptive, and ethical values,	2	2,3,4	4, 7,8,9
Biodiversity of India: values and threats, endangered flora and fauna of India.	3	2,3,4	4, 7,8,9
Invasion, forest fires, disturbance, diseases, habitat loss, habitat degradation, and habitat fragmentation;	3	2,3,4	4, 7,8,9
Climate change; pollution; hunting; over-exploitation; deforestation;	2	2,3,4	4, 7,8,9
	Unit Name Fundamentals of Ecology Basic definitions, concepts, and scope: Ecology, multidisciplinary nature and relevance, landscape, Ecosystems, habitat, ecotones, stability, resistance and resilience, Major terrestrial biomes, Abiotic and biotic factors Community Ecology Basic concepts, community structure and organization, Biomass, keystone species, ecotones and edge effects, Ecological succession: primary and secondary succession, types of succession, Climax community concepts. Biodiversity Moidiversity and extinctions, Biodiversity conservation strategies: in situ and ex situ Conservation, Biodiversity indices: Shannon-Wiener index, Simpson index, similarity index, evenness index, frequency, abundance, density, relative density, diversity, biomass estimation; Community diversity estimation: alpha, beta and gamma diversity. Values and Threats Economic values, ecosystem services, social, aesthetic, consumptive, and ethical values, Biodiversity of India: values and threats, endangered flora and fauna of India. Invasion, forest fires, disturbance, diseases, habitat loss, habitat degradation, and habitat fragmentation;	Unit NameRequired Equired International context HoursFundamentals of Ecology10Basic definitions, concepts, and scope:2Ecology, multidisciplinary nature and relevance, landscape,2Ecosystems, habitat, ecotones, stability, resistance and resilience,2Major terrestrial biomes,2Abiotic and biotic factors2Community Ecology10Basic concepts, community structure and organization, succession, types of succession,2Ecological succession: primary and secondary succession, types of succession,3Climax community concepts.3Biodiversity12Concept, definition and levels, diversity of flora and fauna, keystone species.2Biodiversity and extinctions, Biodiversity conservation, strategies: in situ and ex situ Conservation, succession;3Biodiversity indices: Shannon-Wiener index, Simpson index, similarity index, evenness index, frequency, abundance, density, relative density, diversity, biomass estimation;2Values and Threats14Economic values, ecosystem services, social, aesthetic, consumptive, and ethical values, and ethical values, shabitat degradation, and habitat fragmentation;3Climate change; pollution; hunting; over-exploitation; deforestation;3	Unit NameRequired Function of the set of

	Hydropower development; invasive species; land use changes;	2	2,3,4	4, 7,8,9
	Overgrazing; man-wildlife conflicts, mass extinction	2	2,3,4	4, 7,8,9
Unit 5	Conservation and Management	14		
	Biodiversity conservation and management: Types, management, threatened, endangered and extinct species,	2	2,3,4	3,7,8,9
	In-situ and ex-situ conservation and reintroduction,	2	2,3,4	3,7,8,9
	National parks, Sanctuary and Biosphere reserve – difference and location in India. Endemism, hotspots and coldspots of biodiversity, mega diversity,	3	2,3,4	3,7,8,9
	IUCN Red List categorization – guidelines, practice and application,	3	2,3,4	3,7,8,9
	IUCN Red Data Books, Convention on biodiversity (CBD)	2	2,3,4	3,7,8,9
	National Biodiversity Action Plan, National Biodiversity Authority.	2	2,3,4	3,7,8,9
	Total Hours	60		

		Conti	nuous l	Learning	Assess	ments (5	50%)			End Som	actor
Bloom's Cognitiv	Level of ve Task	CLA-2 (10%)	1	Mid-1 ((15%)	CLA-2	(10%)	Mid-2	(15%)	End Sen Exam (50	19%)
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Loval 1	Remember	50%		50%	50%	50%	50%	50%		50%	
Bloom's Le Cognitive T Level 1 U Level 2 A A Level 3 E	Understand	50 %	-	50 /0	50%	50 %	50%	50 /0	_	5070	-
Lovel 2	Apply	50%	-	50%	20%	50%	20%	50%		50%	
Leverz	Analyse	50 %		50 %	30 %	50 %	30 %	50 %	-	50 %	-
Lovel 3	Evaluate	-	-	-	-	-	-	-	-	-	-
Levers	Create	-	-	-	-	-	-	-	-	-	-
Total		100%		100%		100%		100%		100%	

Recommended Resources

- 1. Global Biodiversity. T. Pullaiah, Apple Academic Press Inc. Vol. 1, 2019.
- 2. The Ecology of Plants. Gurevitch J., Scheiner S.M., & Fox G.A. Sinauer Associates Inc; 3rd edition, 2020.
- 3. Biodiversity and Ecosystem functioning: Synthesis and Perspectives. Loreau M. & Inchausti P. Oxford University Press, Oxford, UK, 2012.
- 4. Ecology and Environment. Rastogi Publications, Meerut New Delhi. Sharma, P. D., ISBN-10: 8171339654, 2011.
- 5. Biological invasions: Economic and environmental costs of alien plant, animal, and microbe species. Pimentel, D. CRC Press. 2011.
- 6. Fundamentals of Ecology. Odum E.P. and Barrett G.W. Cengage India Private Limited; 5th edition. (2017).
- 7. Biodiversity: An Introduction. Larsen & Keller Education. Jase Fitzgerald (2017).
- 8. An Advanced Textbook on Biodiversity Principles and Practice. Oxford and IBH Publications Co. Pvt. Ltd. New Delhi. Krishnamurthy K.V. (2018).
- 9. Conservation Biology for All. Sodhi, N.S. & Ehrlich, P.R. (Ed.). Oxford University Press. 2010.

Course Designer

Dr. Javid Ahmad Dar, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Environmental Laboratory – II

Course Code	EVS 507	Course Category	CC	L-T-P-C	0 0 6 3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)	
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards			

Course Objectives

- 1. The course is aimed to develop sampling and analytical skills of the students which are required for addressing common environmental problems with particular focus on water quality
- 2. Provide ability for students develop experimental designs for a given environmental problem including sampling, analysis, and interpretation of results
- 3. Enhance the student's interpretation skills of environmental results and provide necessary expertise in developing technical solutions for environmental issues.

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand different analytical methods for water quality monitoring of drinking water, natural waterbodies, and wastewater treatment plants	2	80 %	75 %
2	Illustrate the variation in water quality of different aquatic environments	3	80	70 %
3	Analyse water quality data and prepare reports	4	80	70 %
4	Evaluate the changes in water quality in response to various anthropogenic pressures	5	80	70 %

Course Outcome (COs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pro	ogram	Learn	ing O	utcom	es (PL	O)				
CLOs	Engineering Knowledge	Problem	Design and Develonment	Analysis, Design and	Modern Tool	Society and Multicultural	Environment	Moral, and	Individual and Teamwork	Communicatio n Skills	Project Management	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	-	2	2	1	1	2	3	3	2	1	1	1	2	1	1
Outcome 2	-	2	2	2	1	1	3	3	3	1	1	1	2	2	1
Outcome 3	-	3	2	3	1	2	3	3	3	2	2	1	1	3	2
Outcome 4	-	3	2	3	1	2	3	3	3	3	2	2	2	3	3
Course Average	-	2.5	2	2.25	1	1.75	3	3	2.75	1.75	1.5	1.25	1.75	2.25	1.75

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Determination of temperature, pH, conductivity and dissolved oxygen using multiparameter water quality probe	6	1, 2, 3, 4	1,2
Unit No.	Determination of light intensity in waterbodies using underwater light meter	3	1, 2, 3, 4	3
	Determination of flow rate and discharge rate in freshwater ecosystem.	3	1, 2, 3, 4	3
	Estimation of dissolved oxygen in water by Winkler's titration method.	6	1, 2, 3, 4	2
.	Estimation of BOD in water and wastewater sources.	6	1, 2, 3, 4	1,2
Unit No. 2	Estimation of COD in water and wastewater	3	1, 2, 3, 4	1,2
-	Determination of hardness of water using titration method	3	1, 2, 3, 4	1,2
	Determination of total alkalinity in water.	3	1, 2, 3, 4	1,2
Unit	Measurement of dissolved organic carbon concentration using Total Organic Carbon Analyzer	12	1, 2, 3, 4	1,2
3	Determination of Greenhouse gas (CO2, CH4, and N2O) concentration and fluxes in soil and water using Gas Chromatography and floating/static chambers	12	1, 2, 3, 4	1,2
	Determination of absorbance, and fluorescence properties of dissolved organic matter in water and wastewater	6	1, 2, 3, 4	3
Unit	Estimation of inorganic nutrients (nitrate, nitrite, Ammonia, phosphate) in water and wastewater	6	1, 2, 3, 4	2
NO. 4	Spectroscopic determination of Chlorophyll pigments	3	1, 2, 3, 4	2
	Determination of iron content in water by Spectrophotometric method	3	1, 2, 3, 4	2
	Enumeration of culturable bacteria (Colony forming unit) in soil and water	6	1, 2, 3, 4	1
Unit	Gram staining of bacterial cells using light microscope	3	1, 2, 3, 4	1
5	Determination of total bacterial count in water and soil using fluorescence microscopy	6	1, 2, 3, 4	1
	Determination of total coliform in water and wastewater using MPN method	6	1, 2, 3, 4	1
	Total Hours	96		

			Conti	nuous	Learnin	g Asses	sments	(50%)		End Se	mester
Bloc Cog	om's Level of gnitive Task	CL (15	.A-1 5%)	CL (15	.A-2 5%)	CL (20	A-3 0%)	Mid (Term %)	Exam	(50%)
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Loval 1	Remember	-	-	-	-	-	-	-	-	-	-
Level 1 Re Level 2 A	Understand	-	20	-	-	-	-	-	-	-	20
Laval 2	Apply	-	30	-	30	-	-	-	-	-	30
Level 2	Analyse	-	30	-	40	-	50	-	-	-	40
Lorrol 2	Evaluate	-	20	-	30	-	50	-	-	-	10
Level 3	Create	-	-	-	-	-	-	-	-	-	-
	Total	-	100		100		100	-	-	-	100

Recommended Resources

- Standard Methods For the Examination of Water and Wastewater, 24th Edition. Edited by Lipps W, C., Braun-Howland, E.B., Baxter, TE (2024). American Public Health Association
- Grasshoff K, Ehrhardt M, Kremling K, Eds. 1999. Methods of sea water analysis. 3rd edn. Wainheins: VCH Publishers.
- Wetzel's Limnology, Lake and River Ecosystems, 4th Edition, Edited by Jones, I.D., Smol, J.P (2023), Academic Press, ISBN: 978-0-12-822701-5

Course designer

Dr. Shoji D Thottahil, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Design Thinking

Course Code	SEC 502	Course Category	L-T-P-C	1	0	2	2
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)				
Course Offering Department	Management	Professional/ Licensing Standards					

Course Objectives

- 1. Understand the principles of Design Thinking.
- 2. Analyse ideas to produce creative solutions.
- 3. Create effective solutions for real-world problems.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency	Expected Attainment
1	Understand users' explicit requirements and latent needs	1	70	70
2	Apply structured but open-ended approaches to ideation	2	60	70
3	Design a hands-on project using the Design Thinking process	3	50	80
4	Apply various design thinking tools to solve the chosen project problem	2	60	80

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

		Program Learning Outcomes (PLO)												
CLOs	Management Knowledge	Analytical Reasoning and Peoblem Colving	Critical and Reflective Thinking	Strategic Thinking and Logical Reasoning	Modern Tools and ICT Usage	Environment and Sustainability	Moral, Multicultural and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Leadership Readiness Skills	Self-Directed and Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2		2				2							
Outcome 2		3	3	3				3						
Outcome 3			3		2	1		3	2	1				
Outcome 4		3	3	3	1			3			2			
Course Average	2	3	3	3	2	1	2	3	2	1	2			

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
Unit	Foundation			
No.	Understanding of Design Thinking & Its Importance	1	1	1
1	Stages of Design Thinking	2	1	1
	Empathy			
	Review existing literature, case studies, and data to gather background information and understand the current knowledge base related to the problem area.	2	1,3	4
Unit No. 2	Engage in user studies such as interviews, surveys, and observations to gain firsthand insights from the target audience.	3	1,3	4
	Through observation and empathy, identify the core needs, pain points, and challenges faced by users. This phase aims to build a deep understanding of the user's experience and the context in which the problem exists.	3	1,3	4
	Ideate			
	Delve deeper into the data collected during the research phase to comprehend the problem's scope and context.	2	1,2,3	1,4
Unit No. 3	Clearly articulate the problem statement based on the insights gathered. This involves specifying the target audience, the issue at hand, and the desired outcome.	3	2,3	1,4
	Use tools such as mind maps, flowcharts, and other visual aids to map out relationships between different elements of the problem. This helps in identifying patterns, root causes, and key factors that need to be addressed.	5	2,3	1,4
	Develop			
T Lo 24	Brainstorm multiple ideas and potential solutions to the defined problem. Encourage out-of-the-box thinking to explore a wide range of possibilities.	6	2,3,4	2,4
No. 4	From the pool of ideas, develop various alternative concepts that offer different approaches to solving the problem.	3	3,4	2,4
	Propose innovative Prototypes that not only address the problem effectively but also add value and provide a unique perspective.	5	3,4	2,4
	Test			
Unit	Create initial mock-ups or sketches of the proposed solutions. These should be simple representations to visualize the concept.	3	4	2,4
No. 5	Develop scenarios to understand how the solution would function in real-world situations.	3	4	2,4
	Collect and analyse feedback to understand what works well and what needs improvement. This may involve usability testing sessions, focus groups, or surveys.	4	4	2,4

			Continuous Learning Assessments (%)								
Bloo Cog	Bloom's Level of Cognitive Task		A-1 1%)	CLA-2 (20%)		CL. (20	A-3 1%)	Mid Term (0%)		Project (40%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember										
1	Understand	10%									
Level	Apply	10%		10%		10%				10%	
2	Analyse			10%		10%				10%	
Level	Evaluate									10%	
3	Create									10%	
	Total			20%		20%				40%	

Recommended Resources

- 1. Design Thinking Techniques and Approaches, N. Siva Prasad
- 2. Nigel Cross (2011), Design Thinking: Understanding How Designers Think and Work, Bloomsbury Publishing India Private Limited.
- 3. Thomas Lockwood (2009), Design Thinking- Integrating Innovation, Customer Experience and Brand Value, Design Management Institute.
- 4. HBS Online Design Thinking & Innovation course material

Recommended Online Resources

5. MIT Open Course Ware on Engineering Innovation and Designhttps://ocw.mit.edu/courses/esd-051j-engineering-innovation-and-design-fall-2012/

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal ur District Mangalagiri Andhra Pradesh 52224(

Environmental Impact Assessment and Audits													
Course Code	rse Code EVS 508 Course Category Core L-T-P-C												
Pre-Requisite		Co-Requisite	CC	Progressive	_								
Course(s)	-	Course(s)	CC	Course(s)			-						
Course Offering	Environmental	Professional /											
Course Offering	Science &	Licensing		-									
Department	Engineering	Standards											

Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Objectives

- 1. Aim to provide a comprehensive idea about environmental laws and EIA studies.
- 2. To understand the different steps of environmental audits and ISO for industries.

Course Outcomes (COs)

CO's	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand environmental policies and legislation	1	80%	70%
2	Recognize the significance of environmental clearance.	2	80%	70%
3	Analyze different steps of EIA.	4	80%	70%
4	Assess steps of environmental audits and ISO.	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO) For M.Sc.

					P	rogram	Learnin	g Outc	omes (P	'LO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management & Finance	Self-Directed & Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	2	-	1	-	1	3	1	2	-	1	1	3	3	3
Outcome 2	1	2	-	1	-	1	3	1	2	-	1	1	3	3	3
Outcome 3	1	2	-	1	-	2	3	1	2	-	1	1	3	3	3
Outcome 4	1	2	-	1	-	2	3	1	2	-	1	1	3	3	3
Course Average	1	2	-	1	-	1.5	3	1	2	-	1	1	3	3	3

Unit No.	Syllabus Topics	Required Learning Hours	CLOs Addressed	References Used
	Environment Policies	9	1	1, 2
	Environmental Policies- Kyoto Protocol and Clean Development Mechanism (CDM)	2	1	1, 2
Unit	Carbon neutrality.	1	1	1, 2
No. 1	Environmental Legislations-acts, rules,	2	1	1, 2
	Regulations and notifications.	2	1	1, 2
	Environmental standards,	1	1	1, 2
	Criteria for standard setting.	1	1	1, 2
	Environmental Clearance & Framework for EIA	10	1,2	1,2,3
	Forest clearance: Consent to Establish & Consent to Operate	2	1,2	1,2,3
Unit	Environmental conservation plan for endangered flora and fauna.	2	1,2	1,2,3
No. 2	Steps of EIA: Screening, scoping, and baseline studies;	2	1,2	1,2,3
	Environmental Impacts and Mitigation Measures:	2	1,2	1,2,3
	Analysis of Alternatives	1	1,2	1,2,3
	Environmental Monitoring Programme; Project Benefits	1	1,2	1,2,3
	Impact Assessments of Different Environments	9	1,2,3	2,3
	Environmental Impacts; Environmental Impact Analysis	2	1,2,3	2,3
Unit	Environmental Impact Assessment	2	1,2,3	2,3
No. 3	Environmental Impact Statement	2	1,2,3	2,3
	Methods for impacts assessment on physical and natural resources.	3	1,2,3	2,3
	Public Hearing (PH) and EIA notification	7	2,3	2,3
Unit No. 4	Public participation in EIA decision	3	2,3	2,3
	EIA rule notifications and amendments	4	2,3	2,3
	Environmental Audits & ISO	10	3,4	4, 5, 6, 7, 8
	Objectives, types, planning of audits	2	3,4	4, 5, 6, 7, 8
	Organization of auditing program, pre-visit data collection.	2	3,4	4, 5, 6, 7, 8
Unit No. 5	Audit protocol; onsite audit; data sampling, inspections,	2	3,4	4, 5, 6, 7, 8
	Evaluation, and presentation; exit interview; audit report, action plan, management of audits.	2	3,4	4, 5, 6, 7, 8
	Introduction to ISO 14001 series	1`	3,4	4, 5, 6, 7, 8
	OHSAS 18001	1	3,4	4, 5, 6, 7, 8
	Total Learning Hours	45		

			Conti	nuous I	Learnin	g Assessi	nents ((50%)		End					
Bloom	Bloom's Level of		CLA-1 (10%)		Mid-1 (15%)		A-2	Mid (159	-2 /a)	Sem Exam	ester (50%)				
Cognitive Task		Th	Prac	Th	Prac	Th	Pra c	Th	Pra c	Th	Prac				
Level 1	Remember	80%	-	80%	-	-	-	-	-	80%	-				
	Understand														
Level 2	Apply	20%	20%	20%	20%	20%	-	20%	-	100%	-	100%	-	20% -	-
	Analyse	1070		10 /0		10070		100 /0		10 /0					
Loval 2	Evaluate		-		-		-		-		-				
Level 5	Create														
Total		100%		100%		100%		100%		100%					

Recommended Resources:

- 1. Canter L.(1996). Environmental Impact Assessment. McGraw Hill.
- 2. Tripathi R. D. (2009). An Introduction to Environmental Audit. Alpha Publications.
- **3.** Anjaneyulu Y., and Valli M. (2020). Environmental Impact Assessment Methodologies. BS Publications.
- **4.** Gyani G., and Lunia A. (2000). Planning and Implementation of ISO14001, Environmental Management System. Raj Publishing House.
- 5. Woodside G., and Aurrichio P. (1999). ISO 14001 Auditing Manual. McGraw-Hill.
- 6. Caseio J., (Ed), Published CEEM Information Services (2000). The ISO: 14000 Handbook.
- 7. Ritchie I., and Hayes W. (1998). A Guide to the Implementation of the ISO: 14000 Series on Environmental Management -, Prentice Hall, New Jersey.
- 8. OHSAS & SA Guidelines.

Course Designer

Dr. Pankaj Pathak, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Course Code	EVS 509	Course Category	CC	L-T-P-C	2	1	0	3
Pre-Requisite	-	Co-Requisite	-	Progressive	-			
Course(s)		Course(s)		Course(s)				
Course Offering	Environmental	Professional /	-					
Department	Science and	Licensing Standards						
	Engineering							

Geospatial Technologies for Environmental Applications

Course Objectives

- 1. To understand and gain knowledge on the principles of remote sensing and GIS, and their applications in various fields.
- 2. To acquire skills in modern techniques such as mapping, monitoring and modelling etc.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Acquaint students with basic concepts, principles, applications of remote Sensing and GIS in diverse areas	2	80%	70%
2	Develop skills in preparing maps, interpretation, and analysis of images and modelling	3	80%	70%
3	Familiarize with the recent developments in remote sensing and GIS applications	2	80%	70%
4	Understand the role of remote sensing in planning and management	1	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pı	ogram	Learni	ing Ou	tcomes	(PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	1	2	1	-	3	-	1	-	1	-	3	3	3
Outcome 2	1	1	1	1	1	1	3	-	1	-	1	-	3	3	3
Outcome 3	1	1	1	1	1	-	3	-	1	-	1	-	3	3	3
Outcome 4	1	1	1	1	-	-	3	-	1	-	1	-	3	3	3
Course Average	1	1	1	1	1	1	3	-	1	-	1	-	3	3	3

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Remote sensing	9	1,2	1,2,3
	Definition, basic concepts	1	1,2	1,2,3
	Principles of remote sensing, types, system overview, scope	2	1,2	1,2,3
Unit	Satellite remote Sensing, electromagnetic radiation (EMR)	1	1,2	1,2,3
No. 1	Indian remote sensing satellites	1	1,2	1,2,3
	Platforms and sensors	1	1,2	1,2,3
	Digital image processing and image interpretation	2	1,2	1,2,3
	Resolution- spatial, spectral, radiometric and temporal	1	1,2	1,2,3
	Aerial photography and photogrammetry	9	1,2	1,2,3
Unit No. 2	Basic concepts, definition	1	1,2	1,2,3
	Specifications for planning and execution	2	1,2	1,2,3
	Types and information recorded on aerial photographs	1	1,2	1,2,3
	Photogrammetry fundamentals	2	1,2	1,2,3
	Measurements from aerial photographs	1	1,2	1,2,3
	Stereoscopes, stereovision, parallax method (measurement of height of objects)	2	1,2	1,2,3
	Thermal and microwave remote sensing and GIS	10	2,3,4	1,2,3
	Concept, properties, and applications of thermal infrared radiations	1	2,3,4	1,2,3
	Microwave remote sensing - introduction, advantages	1	2,3,4	1,2,3
Unit No. 3	Active remote sensing components	1	2,3,4	1,2,3
	Radar operating principles	1	2,3,4	1,2,3
	Spatial resolution, return, characteristics	1	2,3,4	1,2,3
	Interpretation of RADAR images	1	2,3,4	1,2,3

	Geographical Information system (GIS) - definition, components	1	2,3,4	1,2,3
	Data and database structures	1	2,3,4	1,2,3
	Spatial data models - vector and raster	1	2,3,4	1,2,3
	Data input and output	1	2,3,4	1,2,3
	Image interpretation in remote sensing	8	2,3,4	4,5,6
	Image interpretation - visual, aerial and satellite	2	2,3,4	4,5,6
Unit	Digital image processing	2	2,3,4	4,5,6
1NO. 4	Image restoration	1	2,3,4	4,5,6
	Image enhancement	1	2,3,4	4,5,6
	Image information extraction	2	2,3,4	4,5,6
	Applications of remote sensing and GIS	9	1,2,3,4	1,7,8
	Applications in land use and land cover mapping	1	1,2,3,4	1,7,8
	Forestry, forest fires, agriculture, soil surveys	1	1,2,3,4	1,7,8
Unit No. 5	Disaster management, water resources	1	1,2,3,4	1,7,8
	Ecology, environment and oceanography	2	1,2,3,4	1,7,8
	Working knowledge of Q-GIS	2	1,2,3,4	1,7,8
	Working knowledge of ArcGIS	2	1,2,3,4	1,7,8
	Total Hours	45		

			Continuous Learning Assessments (50%)										
Bloo	Bloom's Level of		CLA-1		CLA-2		CLA-3		erm	Seme	ester		
Cognitive Task		(10)	(10%)		(15%)		(10%)		%)	Exam (50%)			
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac		
Level	Remember	25%	-	25%	-	25%	-	25%	-	25%	-		
1	Understand	25%	-	25%	-	25%	-	25%	-	25%	-		
Level	Apply	50%	-	50%	-	50%	-	50%	-	50%	-		
2	Analyse	-	-	-	-	-	-	-	-	-	-		
Level	Evaluate	-	-	-	-	-	-	-	-	-	-		
3	Create	-	-	-	-	-	-	-	-	-	-		
Total		100%		100%		100%		100%		100%			

Recommended Resources

- A Text Book on Remote Sensing and GIS, 1st Edition, Singh (2024). Book Rivers. ISBN 9788196544461
- Introduction to Remote Sensing, 6th Edition, Campbell, Wynne and Thomas (2022). Guilford Press. ISBN 9781462549405
- Fundamentals of Satellite Remote Sensing: An Environmental Approach, 3rd Edition, Chuvieco (2020). CRC Press. ISBN 9781138583832
- Remote sensing and image interpretation, 7th Edition, Chipman, Kiefer and Lillesand (2015). Wiley. ISBN 9781118343289
- Fundamentals of Remote Sensing, 3rd Edition, Joseph and Jeganathan (2018). Orient BlackSwan. ISBN 9789386235466
- Introductory Digital Image Processing: A Remote Sensing Perspective, 4th Edition, Jensen (2017). Pearson Education. ISBN 9789352864355
- Principles of Geographical Information Systems, 3rd Edition, Burrough, McDonnell and Lloyd (2015). Oxford University Press. ISBN 9780198742845
- 8. Principles of Remote Sensing, 1st Edition, Curran (2020). Rawat Publications. ISBN 9788131611067

Recommended Online Resources

- 1. ESRI Training Catalog https://www.esri.com/training/catalog/search/
- Wydział Nauk Geograficznych Tutorial http://geoinfo.amu.edu.pl/wpk/rst/rst/Front/overview.html
- Geographic Information Systems (GIS) Specialization https://www.coursera.org/specializations/gis

Dr. Javid Ahmad Dar, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

SRM University – AP, Andhra Pradesh
Neerukonda, Mangalagiri Mandal
Guntur District, Mangalagiri, Andhra Pradesh 522240

	Urban Mining and Sustainability													
Course Code	EVS 557	Course Category	CE	L-T-P-C	2	1	0	3						
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)										
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards												

Course Objectives / Course Learning Rationales (CLRs)

- **1.** To show the need for secondary resources through urban mining.
- **2.** To understand the steps of resource sustainability.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify the sources of secondary materials and their management.	3	80%	75%
Outcome 2	Discuss the challenges associated with secondary materials and their sustainable solutions.	2	80%	75%
Outcome 3	Demonstrate sustainable assessment tools.	2	80%	70%
Outcome 4	Describe the process of creating secondary materials for a sustainable society.	2	80%	70%

Course Articulation Matrix (CLO) to (PLO)

					Pro	ogram	Learni	ng Out	tcomes	(PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	-	1	-	-	3	-	-	-	-	1	1	2	3
Outcome 2	2	2	-	1	-	1	3	-	-	-	-	1	2	2	3
Outcome 3	2	2	-	1	-	1	3	-	1	-	-	1	3	3	3
Outcome 4	2	2	-	1	-	1	3	-	1		-	1	2	2	2
Course Average	1.75	1.75	-	1	-	1	3	-	1	-	-	1	2	2.25	2.75

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit	Introduction to Urban Mining	8	1	1, 2,3
No. 1	Definitions of Urban Mining, Waste Management,	2	1	1, 2,3
	Introduction to Waste to resource, Secondary Materials	3	1	1, 2,3
	Urban mining and its tools	3	1,2	1,2,3,4
Unit	Sustainability in Urban Mining	8	1,2	1,2,3
No. 2	Background of sustainability, Framework for sustainability, Sustainable indicators	4	1,2	1,2,3
	Sustainability Assessment, Global concerns of materials	4	1,2	1,2,3
Unit	Sustainability Assessment Tools	9	1,2,3,4	1,2,3,4
No. 3	Life cycle assessment on solid waste, Life cycle costing of SW	4	1,2,3,4	1,2,3,4
	Life cycle impacts, Environmental Social and Governance (ESG)	3	1,2,3,4	1,2,3,4
	Industrial aspects of cleaner production and circular economy	2	1,2,3	1,2,3,4
Unit	Sustainable Secondary Materials	10	3,4	2,3,4
No. 4	Introduction of secondary materials	2	3,4	2,3,4
	Types of secondary materials	2	3,4	2,3,4
	conversion of waste to secondary materials (compost, biogas, construction materials, secondary metals)	4	3,4	2,3,4
	Inhouse search for secondary materials	2	4	1,2,3,4
Unit	Urban Mining: Material Recovery	10	2,3,4	1,2,4
No. 5	Metal recovery from Batteries	1	2,3,4	1,2,4
	Leaching, Solvent extraction	3	2,3,4	1,2,4
	Electrowinning	3	2,3,4	1,2,4
	Occupational safety measures for the processing of secondary materials	3	1,2,3,4	1,2,3,4
	Total Contact Hours		45	

Learning Assessment (Theory)

Bloom	m'a Laval of	Continu	ous Learning	g Assessmer	nts (50%)	End
Cog	nitive Task	CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Semester Exam (50%)
Lovol 1	Remember	80%	80%	80%	70%	80%
Level 1	Understand	80 /0	00 /0	00 /0	70%	00 /0
Lowel 2	Apply	20%	20%	20%	20%	20%
Level 2	Analyse	20 /0	20 /0	20 /0	30 %	20 /0
Lowel 2	Evaluate					
Level 5	Create	-	-	-	-	-
	Total	100%	100%	100%	100%	100%

Recommended Resources

- 1. Sustainability for Beginners: Introduction and Business Prospects by Ramadoss Tamil Selvan and Seeram Ramakrishna, World Scientific Publishers, (2022).
- 2. Urban Mining for Waste Management and Resource Recovery: Sustainable Approaches by Pankaj Pathak, P.R. Rout, CRC Press, (2021).
- 3. <u>https://www.unido.org/our-focus-cross-cutting-services/circular-economy.</u>

4. Life Cycle Assessment (LCA): A Guide to Best Practice by Walter Klöpffer, Birgit Grahl, Wiley

Online Library, (2014).

Course Designer and Co-ordinator

Dr Pankaj Pathak, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Applied Hydrogeology

Course Code	EVS 556	Course Category	CE	L-T-P-C	2	1	0	3
Pre- Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course	Environmental	Professional						
Offering	Science and	/ Licensing						
Department	Engineering	Standards						

Course Objectives

- **1.** To assess groundwater recharge, groundwater evolution, hydro geochemistry, flow pattern, geological framework and contaminant mobilization.
- **2.** To articulate the hydrogeological knowledge on analysis on the implementation of water management practices

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Summarize the concept of geoscience, particularly in engineering hydrogeology	2	80%	70%
Outcome 2	Articulate the impact of geological formations on groundwater flow patterns and storage	2	80%	70%
Outcome 3	Illustrate the parameters responsible for the contaminant transport in a groundwater system and recharge	3	80%	70%
Outcome 4	Examine the groundwater exploration and possible management strategies in local and catchment scale	4	80%	70%

Course Outcome (COs)

	Progra	rogram Learning Outcomes (PO)													
COs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and	Modern Tool and ICT	Society and Multicultural Skills	Environment and Sustainability	Moral, and Ethical	Individual and	Communication Skills	Project Management and Finance	Self-Directed and Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	-	1	1	1	3	-	1	-	1	1	0	0	0
Outcome 2	2	1	-	1	1	1	3	-	1	-	1	1	0	0	0
Outcome 3	2	2	2	2	1	1	3	1	1	1	1	2	0	0	0
Outcome 4	3	3	3	3	3	2	3	2	1	1	2	3	0	0	0
Course Average	1.75	1. 7 5	1. 25	1 7 5	1. 2 5	1.25	3	0. 7 5	1	0. 5	1.25	1.75	0	0	0

Course Articulation Matrix (CO) to Program Learning Outcomes (PO)

Unit No.	Unit Name	Required Contact Hours	COs Addressed	References Used
Unit 1	Concept of hydrogeology	9	1,2	1
	Concept of hydrogeology and its relation to the global hydrologic cycle.	2	1,2	1
	Equation of hydrologic processes.	3	1,2	1
	Concept of surface water-groundwater interaction, hydrogeologic properties of geologic media.	3	1,2	1,2
	Effects and controls of porosity and permeability	1	1,2	1,2
Unit	Surface-Subsurface media and flow of	13	23	123
2	water	15	2,5	1,2,5
	Hydrodynamic equations, and concept of flow, nature of flow, flow lines, potentiometric distributions	2	2,3	1,3
	Concept of basin, unit basin, effect of scale, flow at various scales	3	2,3	3
	Hubbert flow, Tothean flow, various triggers of flow, effects of heterogeneities on scale and nature of flow	3	2,3	3
	Introduction to modelling of flow	3	2,3	3
	Vadose zone hydrology: equations, conditions, and scales	2	2,3	1,3

Unit 3	Isotopes hydrology	10	3,4	2,3
	Systematic and applications of δ^{18} O, δ^{2} H, δ^{34} S, δ^{13} C in hydrologic and hydrogeologic events,	5	3	2,3
	Fractionation, patterns, recharge signatures	5	3,4	2,3
Unit 4	Geochemistry	10	3	1,2,3,4
	Aqueous geochemistry, sources and pathways of groundwater solutes, chemical evolution	4	3	1,2,3,4
	Types of groundwater contaminants	3	3	1,2,3,4
	Contaminant fate and transport	3	4	1,2,3,4
Unit 5	Case studies on hydrogeology	3	4	1,2,3,4
	Groundwater management strategies, exploration techniques, project development,	1	4	1,2,3,4
	Case studies: Physical hydrogeology	1	4	1,2,3,4
	Case studies: Chemical hydrogeology	1	4	1,2,3,4
	Total Contact Hours		45	

		Contin	uous Learnin	g Assessment	s (50%)	End
Bloon Cog	m's Level of nitive Task	CLA-1 (10%)	CLA-2 (15%)	CLA-2CLA-3Mid-115%)(10%)(15%)		Semester Exam (50%)
Level	Remember	50%	50%	50%	25%	50%
1	Understand	50 %	50 %	50 %	25 /0	50 %
Level	Apply	50%	50%	50%	75%	50%
2	Analyse	50 %	50 %	50 %	7570	50 %
Level	Evaluate					
3 Create		-	-	-	-	-
	Total	100%	100%	100%	100%	100%

Recommended Resources

- Fetter Jr C. W. and Kreamer, D. (2018) Applied hydrogeology. Waveland Press. ISBN 10: 1-4786-4652-7
- Gupta, S. K. (2011). Modern hydrology and sustainable water development. John Wiley & Sons. ISBN:9781405171243
- Tóth, J. (2009). Gravitational systems of groundwater flow: theory, evaluation, utilization. Cambridge University Press. ISBN: 9780511576546

 Domenico, P. A. and Schwartz, F. W. (1997). Physical and chemical hydrogeology. John wiley & sons. ISBN: 978-0-471-59762-9

Course Designer and Co-ordinator

Dr Kousik Das, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Aquatic Microbial Ecology and Biogeochemistry

Course Code	EVS 555	Course Category	CE	L-T-P-C	2	1	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering	Environmental	Professional /						
Department	Science and	Licensing Standards						
	Engineering							

Course Objectives

- 1. Provide basic understanding on microbial ecology and biogeochemistry of aquatic ecosystems
- 2. Provide an overview on processes controlling microbial abundances, growth, and diversity in

aquatic environments and provide an understanding on the concept of microbial loop.

- 3. Provide a comprehensive understanding on ways that microorganisms influence nutrient and organic matter cycling in aquatic ecosystems.
- 4. Provide an understanding of the oceanic biogeochemical cycles and its implications on global climate change.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Describe the fundamentals aspects of microbial ecology and biogeochemistry of aquatic systems	2	80%	70%
2	Relate the movements of key elements (C, N, P) in aquatic systems to microbial dynamics	2	80%	70%
3	Relate the dynamics of microorganisms to greenhouse gas dynamics in aquatic ecosystems	2	80%	70%
4	Explore the relationship between global biogeochemical cycles and the ecology of key microbial groups in aquatic environmental	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

	Program Learning Outcomes (PLO)														
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	-	1	-	2	1	2	3	1	1	1	-	1	2	2	3
Outcome 2	-	1	-	2	1	2	3	1	1	1	-	1	2	2	3
Outcome 3	-	1	-	2	1	2	3	1	1	1	-	1	2	2	3
Outcome 4	-	1	-	2	1	2	3	1	1	1	-	1	2	2	3
Course Average	-	1	-	2	1	2	3	1	1	1	-	1	2	2	3

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Introduction to Aquatic Microbial Ecology			
	Phytoplankton: Production, distribution and diversity in various aquatic environment	2	1	1
Unit No.	Bacteria: Production, distribution and diversity in various aquatic systems	2	1	1
No. 1	Role of microbes in nutrient (phosphorus and nitrogen) cycling	1	2	1
	Role of microbes in organic carbon cycling	1	2	1
	Nutrient limitation on the aquatic organisms and their implication	2	1,2	1
	N2 and carbon fixation	1	1,2	1
	Biogeochemical cycles in aquatic environment			
	Movement, storage, and transformation of elements (C, N, P) across hydrosphere and other earth systems	2	1	1, 2
Unit	Composition and reactivity of DOM	1	1	1, 2
No.	DOM Production and Consumption processes	2	1,2	1, 2
2	Chromophoric DOM	1	1	1, 2
	Chromophoric DOM: Movement from soil to streams to open ocean	1	1	1, 2
	DOM and global carbon cycle	2	1	1, 2
	Microbial respiration, production, and microbial loop			
	Aquatic respiration	1	2,3	3
	Respiration at organism (bacteria, plankton, etc.) to ecosystem system level (lakes, coastal, and oceanic systems)	2	2,3	3
Unit	Bacterial production and respiration	1	2,3	2,3
No.	Microbial Loop in aquatic systems	1	2,3	3
3	Role of microbial loop in aquatic carbon cycling	1	2,3	3
	Microbial loop and food webs	1	2,3	3
	Microbial carbon pump	1	2,3	3
	Biogeographic patterns of bacterial communities across soil - freshwater aquatic networks – Ocean continuum.	1	2,3	3
	Microbes and Aquatic GHG emission			
Unit	Emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).	2	3,4	2,3
No.	Production and consumption processes of GHGs	2	3,4	2,3
4	Bio-physical controls on GHG emissions	2	3,4	2,3
	Anthropogenic alteration of aquatic GHG emissions.	3	3,4	2,3
	Response of aquatic organisms and matter cycling to global environmental changes			
Unit	Aquatic biogeochemistry and global carbon cycling	2	3,4	1,2
5	Climate change: Impact & response of aquatic ecosystems	1	3,4	1,2
	Eutrophication, Pollution, flow diversion (dams) impacts on carbon cycling	3	3,4	1,2

landscape change impact on aquatic carbon processing	1	3,4	1,2
Human impacts on the cycling of carbon with an emphasis and global change	2	3,4	1,2
Total Hours		45	

			Conti	nuous	Learnin	g Asses	sments	(50%)		End Se	mester
Bloom's Level of Cognitive Task		CL (10	A-1 CL 0%) (10		A-2 0%)	CLA-3 (15%)		Mid Term (15%)		Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
т 14	Remember	20	-	-	-	-	-	20	-	-	-
Level I	Understand	30	-	20	-	10	-	30	-	30	-
Laval 2	Apply	30	-	40	-	40	-	30	-	30	-
Leverz	Analyse	20	-	40	-	50	-	20	-	40	-
Lowol 2	Evaluate	-	-		-	-	-	-	-	-	-
Level 5	Create	-	-		-	-	-	-	-	-	-
Total		100	-	100	-	100	-	100	-	100	-

Recommended Resources

- Advances in Microbial Ecology, Marshall, K.C. (2013). New York, Plenum Press c1977- ISBN-13: 978-1-4684-7611-8
- Hansell DA & Carlson, CA (2014). Biogeochemistry of marine dissolved organic matter. 2nd Edition, Academic Press. ISBN: 9780124059405
- Respiration in Aquatic Ecosystems. Del Giorgio PA & Williams P.A (2005). Oxford University Press ISBN: 0-19-852709- 8

Course designer

Dr. Shoji D Thottahil, Assistant Professor, Environmental Science and Engineering, SRM University-AP

Hydroinformatics

Course Code	EVS 554	Course Category	CE	L-T-P-C	2	1	0	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course	Environmental	Professional/						
Offering	Science and	Licensing						
Department Engineering		Standards						

Course Objectives

Objective 1: To provide the knowledge and understanding of hydrological modelling, forecasting and management in the context of earth system processes

Objective 2: To illustrate the applicability of geospatial technology and enhance ability to identify the hydrological problems and finding solutions

Course Outcomes (COs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Articulate the hydrological cycles and processes	3	80%	70%
Outcome 2	Articulate the type of geospatial data structure and selection of data for hydrological models	3	80%	70%
Outcome 3	Illustrate the selection of hydrological models for local to global problems	3	80%	70%
Outcome 4	Solve hydrological problems by the application of hydro informatics engineering	3	80%	70%

Course Articulation Matrix (CO) to Program Learning Outcomes (PO)

					Pr	ogram 1	Learnin	g Outc	comes (l	PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management &	Self-Directed & Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	2	2	2	2	2	1	3	-	2	-	1	1	0	0	0
Outcome 2	2	2	2	2	2	1	3	-	2	-	1	1	0	0	0

Outcome 3	3	3	2	2	3	2	3	1	2	1	2	2	0	0	0
Outcome 4	3	3	3	3	3	2	3	2	2	1	3	3	0	0	0
Course Average	2.5	2. 5	2.25	2.25	2.5	1.5	3	0.75	2	0.5	1.75	1.75	0	0	0

Course Unitization Plan – Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit	Hydrological processes	8	1,2	1,2,3
No. 1	Hydrologic Cycle and water balance	2	1,2	1,2,3
	Precipitation, Evaporation, Runoff and watershed process	3	1,2	1,2,3
	Groundwater exploration and management	3	1,2	1,2,3
Unit	Hydrological Modelling and Forecasting	9	2,3	1,2,3
No. 2	Modelling Concept, Process and Classification	3	2,3	1,2,3
	Hydroclimatic Data Structure Handling and Management	3	2,3	1,2,3
	Flood and Drought Forecasting	3	2,3	1,2,3
Unit No. 3	Remote Sensing & GIS Applications for Water Resources Engineering	9	1,2,3	2,3,4
	Spatial decision support systems and GIS	3	1,2,3	2,3,4
	Climate data structure and handling	3	1,2,3	2,3,4
	Climate Change Impact Assessment	3	1,2,3	2,3,4
	Advance Hydrology	11	3,4	2,3,4,5
	Hydrograph, distribution graph for runoff generation, complex storm hydrograph	2	3,4	2,3,4,5
	Snow hydrology, snow formation and accumulation	1.5	3,4	2,3,4,5
Unit No. 4	Fluvial geomorphology, models for hydrologic abstraction processes	2.5	3,4	2,3,4,5
	Aspects of arid zone hydrology	1	3,4	2,3,4,5
	Types of catchment model components and construction	2	3,4	2,3,4,5
	Analysis of time series data – generation of synthetic hydrologic data, etc.	2	3,4	2,3,4,5
	Planning, Management & Economics of Water resources projects	8	3,4	3,4,5
Unit No. 5	Fundamentals of water resource system analysis	2	3,4	3,4,5
	Objectives & scope of Engineering Economics	2	3,4	3,4,5

Cost concept, Annual cost comparison, Present worth, Production, Functions, Pricing policies, pricing methods	4	3,4	3,4,5	
Total Contact Hours	45			

Bloom's Level of Cognitive Task		Contir	End Semester				
		CLA-1 (10%)	CLA-2 (15%)	CLA-3 (10%)	Mid-1 (15%)	Exam (50%)	
Level	Remember	20%	20%	20%	20%	20%	
1	Understand	20 %	20 %	20 %	20 %	20 /0	
Level	Apply	80.0/	80.0/	20.0/	80.9/	80%	
2	Analyse	00 /0	00 /0	00 /0	00 /0	00 /0	
Level	Evaluate						
3	Create	-	-	-	-	-	
	Total	100%	100%	100%	100%	100%	

Recommended Resources

- 1. Jain, S.K. and Singh, V.P. (2019) Engineering Hydrology: An Introduction to Processes, Analysis and Modelling, Mc-Graw-Hill Education. ISBN: 9781259641978
- Eslamian, S. (2015) Handbook of engineering hydrology: environmental hydrology and water management. CRC press. ISBN 9780367372835
- 3. Jensen, J. R. (2009) Remote sensing of the environment: An earth resource perspective 2nd Edition. Pearson Education India (2009). ISBN 978-1-29202-170-6
- 4. Sachse, A., Rink, K., He, W., and Kolditz, O. Springer. (2015) OpenGeoSys-Tutorial: computational hydrology I: groundwater flow modelling. 978-3-319-52808-3
- 5. Burrough, P. A., McDonnell, R. A., and Lloyd, C. D. (2015) Principles of geographical information systems. Oxford university press. ISBN: 9780198742845

Course Designer and Co-ordinator

Dr Kousik Das, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Energy and Environment											
Course Code	EVS 558	Course Category	CE	L-T-P-C	2	1	0	3			
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-						
Course Offering Department	Environment al Science and Engineering	Professional / Licensing Standards	-								

Course Objectives / Course Learning Rationales (CLRs)

- **1.** To understand the different energy sources and its impact on economy
- 2. Understanding the technologies in energy use, utilization of energy resources, energy conversion and environmental consequences.
- **3.** Knowledge to explain the relationship between the use of energy and environmental impacts for electricity, heating, and cooling.

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course, the learner will be able to	Bloom' s Level	Expected Proficieny Percentage	Expected Attainment Percentage
Outcome 1	Understand about conventional and renewable energy technologies and their applications	1	80%	70%
Outcome 2	Explain the various forms of energy along with energy demand and efficiency of different energy conversion technology	2	80%	70%
Outcome 3	Understand the relationship between energy market and its climate change	2	80%	70%
Outcome 4	Evaluate the environmental impact of energy production and consumption	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

		Program Learning Outcomes (PLO)													
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 2	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 3	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 4	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Course Average	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3

Unit No.	Unit Name	Required Learning Hours	CLOs Addressed	References Used
	Energy Scenario	9	1,2	1,2
Unit No. 1	Commercial and Non-Commercial Energy, Primary Energy Resources, Commercial Energy Production, Final Energy Consumption,	3	1,2	1,2
	Energy Needs of Growing Economy, Long Term Energy Scenario	2	1,2	1,2
	Energy Pricing, Energy Sector Reforms	1	1,2	1,2
	Energy and Environment: Air Pollution, Climate Change, Energy Security	3	1,2	1,2
	Basics of Energy Science	9	1,2	1,2,3,4
Unit No. 2	Forms of Energy – Advantages and Limitations - Mechanical Energy - Chemical Energy and Fuels	2	1,2	1,2,3,4
	Nuclear Energy - Hydro Energy - Renewable Energy –Energy Demand	2	1,2	1,2,3,4
	Comparison of Fuels such as Wood, Charcoal, Coal	2	1,2	1,2,3,4

	Kerosene, Diesel, Petrol, Furnace Oil, LPG, Biogas and Electricity on calorific value and cost basis	2	1,2	1,2,3,4
	Efficiencies of various Energy production	1	1,2	1,2,3,4
	Energy Resources and Radiation	9	2,4	1,3,5
	Energy resources and their exploitation, nature of its radiation - Mechanism of radiation action on living systems	3	2,4	1,3,5
Unit No. 3	Stochastic and non-stochastic effects; delayed effects, radioactivity from nuclear reactors,	2	2,4	1,3,5
	fuel processing and radioactive waste, hazards related to power plants,	1	2,4	1,3,5
	Terrestrial and non-terrestrial radiation, nuclear radiations, ultraviolet radiations, pathways analysis and dose assessment,	2	2,4	1,3,5
	radiologic age dating, radioactivity risk assessment, criterion for safe exposure	1	2,4	1,3,5
	Energy And Environment Nexus	9	3,4	3,4,5,6
	Energy Environment Nexus Crisis – Causes and Consequences	2	3,4	3,4,5,6
Unit No 4	Remedial Measures	1	3,4	3,4,5,6
	Impact of Energy Consumption and Production on Environment with illustrations	3	3,4	3,4,5,6
	Role of Energy Economists in solving Energy Crises	3	3,4	3,4,5,6
	Impact of Energy in Environment	9	1,3,4	2,3,4,5,6
	Methods for production and environmental impacts for electricity, heating, and cooling	2	1,3,4	2,3,4,5,6
Unit	Energy conversions in industry and buildings – green building	2	1,3,4	2,3,4,5,6
No. 5	Energy flexibility - Electrical energy, electricity as energy carrier and the infrastructure associated with this.	2	1,3,4	2,3,4,5,6
	Electricity market and price formation - Planning and sizing of energy supply -	1	1,3,4	2,3,4,5,6
	Energy balance and environmental accounts.	1	1,3,4	2,3,4,5,6

Energy use pattern in different parts of the world and its impact on the environment - CO ₂ emission in atmosphere	1	1,3,4	2,3,4,5,6
Total Contact Hours		45	

Recommended Resources

- Non-Conventional Energy Sources, 6th edition, G.D Rai (2022). Khanna publishers. ISBN 978-81-7409-073-7.
- 2. Energy, Environment, and Sustainability, Avinash Kumar Agarwal (2022). Springer. ISSN 2522-8366.
- 3. General aspects pf energy management and energy audit, 4th edition, Study material for Energy Managers and Auditors Examination: Paper I (2015). Bureau of Energy Efficiency.
- 4. Textbook of Renewable Energy, S. C. Bhatia and R.K Guptha (2019). WPI Publishing. ISBN 978-8-1936-4460-7.
- Introduction to Environmental Engineering and Science, 2nd Edition, Gilbert M. Masters (2004). Pearson Education. ISBN 978-8-1297-0277-7.
- Energy and the Environment, 4th Edition, Robert A. Ristinen, Jack J. Kraushaar, and Jeffrey T. Brack (2022). Wiley. ISBN 978-1-119-80025-5.

		Conti	nuous	Learni	ing Ass	sessme	nts (50	%)		End Semester		
Bloom Cognit	's Level of tive Task	CLA- (10%)	CLA-1 (10%)		LA-2 CLA-3 Mid-1 10%) (15%) (15%)		1	Exam	(50%)			
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remembe r	30%	-	30%	_	30%	_	30%	_	60%	_	
1	Understan d	. 50 %										
Level 2	Apply Analyse	70%	-	70%	-	70%	-	70%	-	40%	-	
LevelEvaluate3Create		-	-	-	-	-	-	-	-	-	-	
Total		100%	1	100%	100%		100%		100%		100%	

Learning Assessment

Course Designer

Dr. Karthik Rajendran, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

SRM University - AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Process Design and Systems Analysis												
Course Code	EVS 559	Course Category	CE	L-T-P-C	2	1	0	3					
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-								
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards		-									

Course Objectives / Course Learning Rationales (CLRs)

- 1. To understand the concepts about the process and sustainable product design.
- 2. This course teaches advanced concepts and problem-solving skills in cost estimation, cost analysis, economic assessment, and profitability analysis.
- 3. To understand the concept of green engineering design.

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course, the learner will be able to	Bloom 's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand process flow diagrams, process designing, product designing	1	80%	70%
Outcome 2	Perform manufacturing cost estimation and analysis	4	80%	70%
Outcome 3	Apply economic assessment and profitability analysis of different processes	3	80%	70%
Outcome 4	Explain concepts about green engineering design	2	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pr	ogram 1	Learnin	g Outo	comes (I	PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management &	Self-Directed & Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	1	1	-	-	-	-	-	-	3	-	1	1	3
Outcome 2	1	1	1	2	3	-	-	-	-	-	3	-	2	1	3
Outcome 3	1	1	2	1	3	-	-	2	3	-	-	-	3	1	2
Outcome 4	1	1	2	1	3	-	-	2	3	-	-	-	3	1	2
Course Average	1	1	1	1	3	-	-	2	3	-	3	-	2.2 5	1	2. 5

Unit No.	Unit Name	Require d Learning Hours	CLOs Addressed	References Used
	Understanding chemical processes	9	1,2	1, 2
	Basic process flow diagrams	2	1,2	1, 2
	Introduction – Block flow diagram – process flow diagram	1	1,2	1, 2
Unit No. 1	Design specifications Hierarchy of process design	2	1,2	1, 2
	Batch vs. Continuous process – input/output structure	1	1,2	1, 2
	Recycling and Synthesis Recycle structure – synthesis of PFD from BFD	2	1,2	1, 2

	Green supply chain	1	1,2	1, 2
	Product design and calculations	9	1,2	1, 2
	Design Strategies for product design – batch processing –	2	1,2	1, 2
Unit No.2	Tactics for tracing chemicals	2	1,2	1, 2
	Calculations			
	Calculations for batch and continuous processes -	3	1,2	1, 2
	understanding processing conditions	2	1,2	1, 2
	Capital and manufacturing cost calculations	9	2,3	1, 2
	Estimation Classification of estimates – estimation of purchased equipment cost	2	2,3	1, 2
	Estimating total capital cost	1	2,3	1, 2
Unit No.3	Cost calculations Bare module cost calculations – manufacturing	2	2,3	1, 2
	raw material costs – utility and labour costs	1	23	1 2
	Stream calculations	-	_ ,c	-/ -
	Treating solid and liquid streams	3	2,3	1, 2
	Engineering economics and profitability analysis	9	3	1, 2
	Cash flow diagrams – inflation – depreciation	2	3	1, 2
Unit	Taxation – cash flow	1	3	1, 2
INO. 4	Profit – non discounted and discounted profitability	3	3	1, 2
	Concept of risk – quantifying risk – profit margin analysis	3	3	1, 2
	Green engineering design	9	1,2,4	1, 3, 4
	Environmental regulations – fate of chemicals	3	1,2,4	1, 3, 4
Unit No. 5	Green chemistry - preventing pollution	3	1,2,4	1, 3, 4
	Economics of pollution prevention	2	1,2,4	1, 3, 4
	LCA	1	1,2,4	1, 3, 4
	Total Learning Hours		45	

Recommended Resources

- Analysis, Synthesis, and Design of Chemical Processes, 5th edition, Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz and Debangsu Bhattacharyya (2018). Pearson. ISBN 978-0-1341-7750-2.
- 2.
 SuperPro
 Designer
 User
 Guide,
 intelligen.com/wp

 content/uploads/2020/05/SuperPro_ManualForPrinting_v11.pdf
- 3. SimaPro database manual, https://simapro.com/wp-

content/uploads/2022/06/DatabaseManualMethods940Superseded.pdf

4. www.openlca.org

Learning Assessment

		Conti	nuous l	Learnin	g Asse	ssment	s (50%)			End		
Bloom's Cognitiv	Level of e Task	CLA-1 (10%)		CLA-2 (10%)		CLA-3 (15%)		Mid-1 (15%)		Semester Exam (50%)		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level 1		30%	_	30%	_	30%	_	30%	_	60%	_	
Lever I	Understand	0070		0070		0070		0070				
Level 2	Apply	70%	_	70%	_	70%	_	70%	_	40%	_	
201012	Analyse	1070		1070		1070		1070		-		
Level 3	Evaluate	-	-	-	-	-	-	-	-	-	-	
Create		-		-	-	-	-	-	-	-	-	
Total		100%		100%		100%	100%		100%		100%	

Course Designer

Dr. Karthik Rajendran, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Soil pollution and remediation measures

Course Code	EVS 560	Course Category	Core Elective	L-T-P-C	2	1	0	3
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)		-		
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards		-				

Course Objectives

- 1. Provide knowledge of soil, pollutants, and pollution assessment methods.
- 2. Understand about the soil pollution and remediation measures.

Course Outcome (COs)

CO's	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency	Expected Attainment
			Percentage	Percentage
1	Understand about soil and soil processes.	1	80 %	70%
2	Discuss the soil-pollutant interaction.	2	80%	70%
3	Illustrate soil sampling techniques and understanding of pollution indices.	2	80%	70%
4	Apply of bio-remediation techniques for the removal of pollutants from soil.	3	70%	60 %

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pı	ogram	Learni	ing Ou	tcomes	(PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 2	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 3	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 4	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Course Average	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Soil and soil processes	6	1	4
Unit	Origin of soil - weathering and paedogenic processes	2	1	4
No.	Soil types and classification	2	1	4
1	Soil horizon, soil constituents	1	1	4
	Soil properties – physical, chemical, and biological	1	1	4
	Soil pollution	9	1,2	5, 2
	Introduction to soil pollution	1	1,2	5, 2
	Soil pollutants - heavy metals, solid waste,	1	1,2	5, 2
Unit	Soil pollutants - polluted water, bio-medical wastes	1	1,2	5, 2
NO.	Sources of soil pollution – natural and anthropogenic	2	1,2	5, 2
-	Pollution mechanism	1	1,2	5, 2
	Soil-pollutant interaction	1	1,2	5, 2
	Fate of pollutants in soil	2	1,2	5, 2
	Soil sampling and assessment	10	3	1,2,3
	Soil sampling techniques	1	3	1,2,3
	Sampling location selection, sampling tools	1	3	1,2,3
	Sample preparation	1	3	1,2,3
Unit	Soil analysis – physical, chemical, and	2	3	1,2,3
NO. 3	Soil analysis - biological parameters	1	3	1,2,3
5	Human and ecological risk assessment	2	3	1, 2, 3, 6
	Hazard quotient, ecological risk factor, ecological risk index	1	3	1,2,3
	Pollution indices – contamination factor, geo-accumulation	1	2	100
	index, pollution load index	1	5	1,2,3
	Remediation measures	10	4	1, 2
	Overview of soil remediation measures	1	4	1, 2
Unit	Physical methods – soil washing, soil replacement	2	4	1, 2
No.	Physical methods- encapsulation, thermal desorption	2	4	1, 2
4	Chemical methods – immobilization	1	4	1, 2
	In-situ remediation	2	4	1, 2
	Ex-situ remediation	2	4	1, 2
	Microbial and phytoremediation	10	1, 2, 4	1, 2, 3
	Bio-remediation	1	1, 2, 4	1, 2, 3
	Microbe-assisted remediation	1	1, 2, 4	1, 2, 3
	Genomic approaches, Mycoremediation	1	1, 2, 4	1, 2, 3
Tinit	Introduction to Phytoremediation	1	1, 2, 4	1, 2, 3
No.	Phytoaccumulation, Phytodegradation, Phytostabilization,	2	124	123
5	Phytoextraction	2	1, 2, 1	1, 2, 5
	Measurement of phytoremediation potential – biometric	1	124	123
	growth behaviour	-	-, -, -	_, _ , c
	Bio-accumulation factor, translocation factor,	1	1, 2, 4	1, 2, 3
	Hyperaccumulator plant species			, , -
	Cellular mechanism, detoxification, and tolerance	1	1, 2, 4	1, 2, 3
	Phytochelatins, root exudates	1	1, 2, 4	1, 2, 3
	Total hours		45	

			Continuous Learning Assessments (%)							End S	omostor
Bloom's Level of Cognitive Task		CLA-1 (%) CLA-2		·2 (%) CLA· (%)		.A-3 Mid %) ('		Term %)	Exam (%)		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Lovol 1	Remember	30	-	30	-	20	-	20	-	20	-
Level 1	Understand	20	-	20	-	30	-	30	-	30	-
Lovel 2	Apply	50	-	50	-	50	-	50	-	50	-
Level 2	Analyse	-	-	-	-	-	-	-	-	-	-
Larral 2	Evaluate	-	-	-	-	-	-	-	-	-	-
Levers	Create	-	-	-	-	-	-	-	-	-	-
Total		100	-	100	-	100	-	100	-	100	-

Recommended Resources

- 1. Meuser, H., 2012. Soil remediation and rehabilitation: treatment of contaminated and disturbed land (Vol. 23). Springer Science & Business Media. ISBN 978-94-007-5751-6.
- Duarte, A.C., Cachada, A. and Rocha-Santos, T.A. eds., 2017. Soil pollution: from monitoring to remediation. Academic Press. ISBN 978-0-12-849873-6.
- Gill, R., Naeem, M., Ansari, A.A. and Gill, S.S., 2023. Phytoremediation and Management of Environmental Contaminants: An Overview. Phytoremediation: Management of Environmental Contaminants, Volume 7, pp.3-14. ISBN 978-3-031-17988-4
- 4. Paul, E. and Frey, S. eds., 2023. Soil microbiology, ecology and biochemistry. Elsevier. ISBN: 9780128234150
- Yaron, B., Calvet, R. and Prost, R., 1996. Soil pollution: processes and dynamics. Springer Science & Business Media. ISBN: 3-540-60927-X
- Ashraf, M.A., Maah, M.J. and Yusoff, I., 2014. Soil contamination, risk assessment and remediation. Environmental risk assessment of soil contamination, 1, pp.3-56. ISBN 978-953-51-1235-8

Recommended Online Resources

- 1. NPTEL online course Environmental Remediation of Contaminated Sites by Prof. Bhanu Prakash Vellanki | IIT Roorkee
- NPTEL online course Environmental Soil Chemistry by Prof. Somsubhra ChakrabortyIIT Kharagpur
- 3. SWAYAM https://swayam.gov.in/
- 4. National Digital Library of India <u>https://ndl.iitkgp.ac.in</u>

Course designer and co-ordinator

Dr. Deep Raj, Assistant Professor, Department of Environmental Science and Engineering, SRM University-AP

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Environmental Entrepreneurship and planning													
Course Code	EVS 561	Course CategoryCEL-T-P-C210												
Pre-Requisite Course(s)	-	Co- Requisite Course(s)	-	Progressive Course(s)	-									
Course Offering	Environmental Science and	Professiona 1/Licensing	-											
Department	Engineering	Standards												

Course Objectives / Course Learning Rationales (CLRs)

- **1.** To develop and strengthen entrepreneurial quality and motivation in students.
- 2. To impart basic entrepreneurial skills and understandings to run a business efficiently and effectively.
- 3. To develop skills for effectively managing human resources

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Infer the knowledge and skills needed to run a business	2	80%	70%
Outcome 2	Describe various theories related to the development of leadership skills, motivation techniques, teamwork and effective communication	2	80%	70%
Outcome 3	Apply economic principles to appreciate the functioning of both product and input markets	3	80%	70%
Outcome 4	Use data analysis software for business modelling	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pr	ogram 1	Learnin	g Outo	comes (l	PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management &	Self-Directed & Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	-	2	-	3	-	-	2	-	3	2	-	1	3	3	3
Outcome 2	-	1	2	2	2	1	3	-	2	2	2	1	3	3	3
Outcome 3	-	1	2	1	1	1	3	-	2	2	1	1	3	3	3
Outcome 4	-	1	2	2	2	-	1	-	1	-	1	1	3	3	3
Course Average	-	1. 2 5	1.5	2	1.25	0.5	2.25	-	2	2.5	1	1	3	3	3

Unit No.	Unit Name	Required Learning Hours	CLOs Addressed	References Used
	ENTREPRENEURAL COMPETENCE	6	1,2	1,2
	Entrepreneurship concept – Entrepreneurship as a Career	2	1,2	1,2
Unit No. 1	Entrepreneurial Personality - Characteristics of Successful, Entrepreneur	2	1,2	1,2
No. 1	Knowledge and Skills of Entrepreneur	1	1,2	1,2
	Entrepreneurship Development Training	1	1,2	1,2
	Human Resource Management	9	1,2,3	3,4
Unit	Importance of Human Resource Planning- the concept of best fit employee	3	1,2,3	3,4
No.2	Training and Executive management -	2	1,2,3	3,4
	Compensation plan - Reward - Motivation	1	1,2,3	3,4

	Career management - Development of mentor -	2	1,2,3	3,4
	Protégé relationships	1	1,2,3	3,4
	PLAN PREPARATION	12	2,3	5,6,9
	Sources of Product for Business - Prefeasibility Study -	3	2,3	5,6,9
Unit	Criteria for Selection of Product	1	2,3	5,6,9
No.3	Ownership - Capital - Budgeting Project Profile Preparation	4	2,3	5,6,9
	Matching Entrepreneur with the Project -	2	2,3	5,6,9
	Microeconomics and Macroeconomics	2	2,3	5,6,9
	LAUNCHING OF SMALL BUSINESS	10	1,2,3	7,8
	Finance and Human Resource Mobilization Operations Planning -	3	1,2,3	7,8
Unit	Market and Channel Selection	1	1,2,3	7,8
No. 4	Growth Strategies - Product Launching - Incubation, Venture capital	3	1,2,3	7,8
	IT startups -	1	1,2,3	7,8
	Effective Management of small Business.	2	1,2,3	7,8
	Business modelling	8	3,4	10
	Descriptive Statistics – Forecasting – Risk analysis and sensitivity analysis	2	3,4	10
Unit	Networking models- Inventory models	1	3,4	10
No. 5	Data analysis tools	1	3,4	10
	E- business management national and international trade and Investment	2	3,4	10
	Case study – Feasibility Report Preparation and Evaluation Criteria.	2	3,4	10
	Total Contact Hours		45	

Recommended Resources

- 1. Entrepreneurship, 11th edition, Robert Hisrich, Dean Shepherd and Michael Peters (2020). Tata McGraw Hill. ISBN 978-1-2600-4373-0.
- 2. Entrepreneurial Development, 18th edition, S.S.Khanka (2020). S.Chand and Company Limited. ISBN 978-8-1219-1801-5.
- Human Resource Management, 12th edition, Ivancevich (2012). McGraw Hill. ISBN 978-0-0774-9690 6.
- 4. Human Resource management, Uday Kumar Haldar and Juthika Sarkar (2012). Oxford. ISBN 978-0-9780-1980-8.
- 5. Projects Planning, Analysis, Selection, Implementation and Reviews, 9th edition, Prasanna Chandra (2019). Tata McGraw-Hill. ISBN 978-8-1941-1384-3.
- 6. Modern management: concepts and skills, 14th edition, Samuel C. Certo and Tervis Certo. Pearson education. ISBN 978-9-3325-6502-9.
- 7. Economics, 9th edition, William Boyes and Michael Melvin (2012). South-Western College. ISBN 978-1-1118-2613-0.
- 8. Principles of Economics, 12th edition, Karl E. Case, Ray C. Fair, and E. Oster Sharon (2017). Pearson. ISBN 978-9-3528-6343-3.
- 9. Essentials of management, 11th edition, Harold Koontz, Heinz Weihrich, and Mark V. Cannic (2020). Tata McGraw-Hill Education.
- 10. Microsoft Excel 2010: Data Analysis & Business Modeling, 3rd edition, Wayne L. Winston (2011). Microsoft Press. ISBN 978-0735643369.

			Contir	nuous L	earning	g Asses	sments	(50 %)		E	nd
Bloon Cogr	n's Level of utive Task	CLA-1 (10%)		CLA-2 (10 %)		CLA-3 (15 %)		Mid-1 (15 %)		Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	50%	-	50%	-	50%	-	50%	-	50%	-
1	Understand	0070								2070	
Level	Apply	50%	_	50%	_	50%	_	50%	_	50%	_
2	Analyse	0070		50 /0	_	0070		50 /8		-	
Level	Evaluate	-	-	-	-	-	-	-	-	-	-
3	Create	-	-	-	-	-	-	-	-	-	-
Total		100%		100%		100%		100%		100%	

Learning Assessment

Course Designer

Dr. Karthik Rajendran Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*.

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Biomass Energy													
Course Code	EVS 562	Course Category	CE	L-T-P-C	2	1	0	3					
Pre- Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-								
Course Offering Department	Environmental Science and Engineering	Professional/ Licensing Standards	-										

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand the concept of various biochemical waste to energy conversion technologies.

Objective 2: To understand the concept of various thermochemical waste to energy conversion technologies.

Objective 3: Concept of bioenergy system analysis and knowledge of basic aspects of life cycle assessment (LCA).

Course Outcomes	/ Course	Learning	Outcomes	(CLOs)
-----------------	----------	----------	----------	--------

Outcomes	At the end of the course, the learner will be able to	Bloom' s Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Analyze the biomass resource assessment and get knowledge about bioreactors with its kinetic models	2	80%	70%
Outcome 2	Understand the various conversion technologies to generate energy from biomass	1	80%	70%
Outcome 3	Apply the subject knowledge to address the environmental problems	2	80%	70%
Outcome 4	Evaluate the technical, economical and life cycle assessment of bioenergy plant	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pr	ogram 1	Learnin	g Outo	comes (l	PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management &	Self-Directed & Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	3	2	1	2	2	2	3	2	-	2	3	1	2	3
Outcome 2	2	1	1	2	-	2	2	-	3	-	3	3	1	1	2
Outcome 3	2	1	-	2	2	1	1	2	3	-	3	3	1	1	2
Outcome 4	2	1	1	3	2	3	1	3	-	-	3	2	1	1	2
Course Average	2	1	1	2	1.5	2	1.5	2	2	-	2.75	2.75	1	1	2

Unit No.	Unit Name	Required Learning Hours	CLOs Addressed	References Used	
	Bioenergy Fundamentals	9	1,2	2,3,4	
	Mass and Energy Balances - Reaction Thermodynamics -Reaction Kinetics	1	1,2	2,3,4	
Unit	Microbial Metabolisms -Metabolic Models	1	1,2	2,3,4	
Unit No. 1	Microbial Growth in Batch Culture - Monod Equation for Microbial Growth	3	1,2	2,3,4	
	Mass Balances and Reactions in Fed-Batch and Continuous-Stirred Tank Bioreactors	3	1,2	2,3,4	
	Elemental Balance and Stoichiometric Models	1	1,2	2,3,4	
	Bioenergy Feedstocks	9	1,2	1,2,4	
	Lignocellulose-Based Feedstocks - Feedstock	2	1,2	1,2,4	
Unit No. 2	Availability and Production -Harvesting and Collection of Crop Residues and Energy Crops	3	1,2	1,2,4	
	Algae-Based Feedstocks -Algal Growth Conditions	3	1,2	1,2,4	

	Steps in Algal-Biodiesel Production	1	1,2	1,2,4
	Biological Conversion Technologies	9	1,2,3	1,2,3,4
	Pre-treatment of Lignocellulosic Feedstocks - Enzymatic Hydrolysis	2	1,2,3	1,2,3,4
Unit No. 3	Ethanol Fermentation -Fundamentals of Anaerobic Digestion	3	1,2,3	1,2,3,4
	Anaerobic Digestion Model No. 1 (ADM1)	1	1,2,3	1,2,3,4
	Biogas Production and Applications - Microbial Fuel Cells	3	1,2,3	1,2,3,4
	Thermal Conversion Technologies	9	1,2,3	1,4
	Fundamentals of Biomass Combustion - Biomass Properties and Pre-processing - Biomass Furnaces	3	1,2,3	1,4
Unit No.4	Environmental Impact and Emissions of Biomass Combustion	2	1,2,3	1,4
	Gasification -Gasifiers -Gasification Mass and Energy Balance	3	1,2,3	1,4
	Applications of Biomass Gasification	1	1,2,3	1,4
	Bioenergy System Analysis	9	4	1,4
	Techno-Economic Assessment Basic Steps in TEA	3	4	1,4
Unit No. 5	Tools, Software, and Data Sources for Performing TEA	3	4	1,4
	Life-Cycle Assessment -Procedure for LCA	2	4	1,4
	Tools Available to Perform LCA	1	4	1,4
	Total Learning Hours	45		

		Conti	nuous l	Learnin	g Asse	ssment	s (50%)			End	
Bloon Cogr	n's Level of nitive Task	CLA-1 (10%)	l	CLA-2 (10%)	2	CLA-3 (15%)	3	Mid-1 (15%)		Semester Exam (50%)	
	Domonthor		Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	30%	_	30%	_	30%	_	30%	_	60%	_
1	Understand	/ -		00,0		0070				0070	
Level	Apply	70%	_	70%	_	70%	_	70%	_	40%	
2	Analyse	7070		7070		1070		7070			
Level	Evaluate	_	_	_	_	_	_	-	_		
3	Create										
Total		100%	1	100%	1	100%	1	100%	1	100%	

Recommended Resources

- Bioenergy: Principles and applications, Yebo Li and Smair Kumar Khanal (2016). Wiley Blackwell. ISBN 978-1-118-56831-6.
- Anaerobic Biotechnology for Bioenergy Production: Principles and Applications, S. Harikishan (2008). Wiley-Blackwell. ISBN 978-0-813-82346-1.
- 3. Biogas Production: From Anaerobic Digestion to a Sustainable Bioenergy Industry, Anuj Kumar Chandel and Nagamani Balagurusamy (2021). Springer. ISBN 978-3-0305-8826-7.
- Bioenergy and Biofuels from Biowastes and Biomass, Khanal, S.K., Surampalli, R.Y. Zhang, T.C. Lamsal, B.P., Tyagi, R.D. and C.M. Kao (2010). American Society of Civil Engineers. 2010. ISBN 978-0-7844-1089-9.

Course Designer

Dr. Karthik Rajendran, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

	0	, , , , , , , , , , , , , , , , , , , ,)				
Course Code	EVS 563	Course Category	CE	L-T-P-C	2	1	0	3
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)		_		
Course Offering Department	Environmental Science and Engineering	Professional/ Licensing Standards		-				

Agriculture, food security and climate change

Course Objectives

- 1. To understand global agricultural production and consumption patterns.
- 2. To identify the causes and impacts of climate change on food security at regional and global scales.
- 3. To explore sustainable solutions in agriculture for food security.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Understand global patterns in food production and consumption	2	80%	70%
2	Interpret the causes and impacts of climate change on food security	2	80%	70%
3	Analyse the complexities and trade-offs associated with food security	3	80%	70%
4	Examine potential strategies that focus on sustainable food production	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pı	ogram	Learni	ing Ou	tcomes	(PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 2	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 3	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Outcome 4	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3
Course Average	3	-	-	3	-	-	3	3	-	-	-	-	3	3	3

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Introduction to agriculture and food security	5	1	1,6
	Definitions: agriculture, food security, food insecurity	1	1	1,6
Unit No. 1	Food systems: historic and geographical overview	1	1	1,6
	Major types of agriculture	1	1	1,6
	Global agricultural production and consumption patterns	2	1	1,6
	Environmental drivers of agriculture	10	1,2	1,3
	Environmental determinants of agriculture	2	1,2	1,3
TING	Water resources and food production: Evapotranspiration	1	1,2	1,3
No.	Crop water use, irrigation efficiency, virtual water	1	1,2	1,3
	Impacts of agriculture on water resources	2	1,2	1,3
	Soil resources and food production: Soil maps	2	1,2	1,3
	Overview of nutrients, soil productivity and soil fertility	2	1,2	1,3
	Climate change and agriculture	10	1,2	3,5,6
	Overview of global climate system	1	1,2	3,5,6
	Natural variability and human-induced climate change	1	1,2	3,5,6
	Future climate scenarios and tipping points	1	1,2	3,5,6
Unit No	Global climate zones	1	1,2	3,5,6
3	Agro-climatic zones of India	1	1,2	3,5,6
	Climate-agriculture interactions	1	1,2	3,5,6
	Crop phenology, crop responses to increasing temperature	1	1,2	3,5,6
	Crop responses to ozone and drought	1	1,2	3,5,6
	Regional insights from AgMIP	1	1,2	3,5,6

	Future projections of agricultural production	1	1,2	3,5,6
	Food security challenges	5	3	1,3,5
	Food-energy-environment trilemma	1	3	1,3,5
Unit	Food security – supply and food waste	1	3	1,3,5
No. 4	Food shocks and vulnerabilities, yield gaps, supply chain impacts	1	3	1,3,5
	Global Hunger Index	1	3	1,3,5
	Perspectives from Indian context	1	3	1,3,5
	Emerging technologies for sustainable solutions	15	4	2,4,6
	Sustainable Development Goals: Zero Hunger (SDG 2) and Climate Action (SDG 13)	1	4	2,4,6
] : : :	Mitigation and adaptation pathways: Agroecology, climate- smart agriculture	1	4	2,4,6
	Conservation agriculture, urban agriculture	1	4	2,4,6
	Sustainable intensification	1	4	2,4,6
	Food supply management	1	4	2,4,6
Unit	Demand and diet changes	1	4	2,4,6
5	Geospatial applications: precision agriculture, crop phenology	1	4	2,4,6
	Crop health monitoring, drought assessment	1	4	2,4,6
	AI/ML in agriculture for pre-harvesting tasks	1	4	2,4,6
	AI/ML in agriculture for harvesting tasks	1	4	2,4,6
	AI/ML in agriculture for post-harvesting tasks	1	4	2,4,6
	Benefits & challenges of using AI/ML in agriculture	2	4	2,4,6
	Crop simulation modelling	2	4	2,4,6
Total	Contact Hours		45	

			Cont	inuous I	Learnin	g Assess	ments	(50%)		End Ser	nester
Bloo Cog	m's Level of nitive Task	CLA-1	CLA-1 (10%) CLA-2 (15%) CLA-3 (10%)		Mid T (15%	ˈerm ⁄₀)	Exam (50%)				
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1 1 Level 4	Remember	25%	-	25%	-	25%	-	25%	-	25%	-
	Understand	25%	-	25%	-	25%	-	25%	-	25%	-
Level	Apply	50%	-	50%	-	50%	-	50%	-	50%	-
2	Analyse	-	-	-	-	-	-	-	-	-	-
Level	Evaluate	-	-	-	-	-	-	-	-	-	-
3	Create	-	-	-	-	-	-	-	-	-	-
	Total			100%		100%		100%		100%	

Recommended Resources

- Climate Change, Agriculture and Society: Approaches Toward Sustainability, 1st Edition, Alam and Rukhsana (2023). Springer Nature. ISBN 9783031282508
- Resilience and Food Security in a Food Systems Context, 1st Edition, Béné and Devereux (2022). Springer Nature. ISBN 9783031235351
- Food Security and Climate Change, 1st Edition, Yadav, Redden, Hatfield, Ebert and Hunter (2023). Wiley Blackwell. ISBN 9781119180647
- 4. Machine learning in agriculture domain: A state-of-art survey, Meshram, Patil, Meshram, Hanchate and Ramkteke (2021). Artificial Intelligence in the Life Sciences, 1: 100010
- The State of Indian Agriculture, 1st Edition, Kumar (2020). Sage Publications. ISBN 9789353883348
- Transformations of Global Food Systems for Climate Change Resilience, 1st Edition, Gadhoke, Brenton and Katz (2024). CRC Press. ISBN 9780367857622.
- 7. IPCC Special Report on Food Security https://www.ipcc.ch/srccl/chapter/chapter-5/
- FAO Report on Climate Change and Food Security: Risks and Responses https://openknowledge.fao.org/server/api/core/bitstreams/a4fd8ac5-4582-4a66-91b0-55abf642a400/content.

Course Designer

Dr. Subashree Kothandaraman, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Bioeconomy													
Course Code	EVS 564	Course Category	CE	L-T-P-C	2	1	0	3					
Pre-Requisite Course(s)	-	Co-Requisite Course(s)	-	Progressive Course(s)	-								
Course Offering Department	Environmenta 1 Science and Engineering	Professional/ Licensing Standards	-										

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To reflect on the importance of bioeconomy in the transition economic conditions.

Objective 2: Understand the effect of global and regional bioeconomy and how it reshapes global health and industrial indicators.

Objective 3: To understand the various factors driving bioeconomy

Course Outcomes / Course Learning Outcomes (CLOs)

Outcomes	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand bioeconomy and circular economy	2	80%	70%
Outcome 2	Apply sustainable industrial processes design	3	80%	70%
Outcome 3	Explain global and regional bioeconomy and different drivers affecting bioeconomy.	2	80%	70%
Outcome 4	Examine future of bioeconomy and challenges. Policy and decision making.	3	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pr	ogram 1	Learnin	g Outo	comes (l	PLO)					
CLOs	Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design & Research	Modern Tool & ICT Usage	Society & Multicultural Skills	Environment & Sustainability	Moral, & Ethical Awareness	Individual & Teamwork Skills	Communication Skills	Project Management &	Self-Directed & Lifelong Learning	PSO 1	PSO 2	PSO 3
Outcome 1	-	3	-	3	-	-	3	-	-	-	1	2	3	3	2
Outcome 2	-	3	2	3	-	-	2	-	-	-	1	3	3	2	2
Outcome 3	-	3	2	3	-	-	2	-	-	-	1	3	3	2	2
Outcome 4		3	2	2		2	2				1	2	3	2	2
Course Average	-	3	1.5	2.75	-	0.5	2.25	-	-	-	1	2.5	3	2	2

Unit No.	Unit Name	Required Learning Hours	CLOs Addressed	References Used
Unit No. 1	Introduction to Bioeconomy	9	1	1, 2, 3
	Introduction- What is Bioeconomy?	2	1	1, 2, 3
	Circular economy	1	1	1, 2, 3
	Factors affecting bioeconomy	2	1	1, 2, 3
	State of Bioeconomy today	1	1	1, 2, 3
	Importance of bioeconomy	3	1	1, 2, 3
	Sustainable Industrial Processes	9	1,2	3,4
	Importance of biotechnology	2	1,2	3,4
Unit	Sectors and products of bioeconomy	1	1,2	3,4
No. 2	Industrial processes – Biofuels, Agriculture	3	1,2	3,4
	Pharmaceuticals, Chemicals	2	1,2	3,4
	Healthcare Research	1	1,2	3,4

	Global and regional Bioeconomy	9	2,3	3,4
	Bioeconomy in US	2	2,3	3,4
Unit	Bioeconomy in Europe	1	2,3	3,4
No. 3	Bioeconomy in Indian Context	3	2,3	3,4
	COVID economy	1	2,3	3,4
	Role of bioeconomy in GDP	2	2,3	3,4
	Bioeconomy drivers	9	1,2,3	2,3,5
	Energy and Biomass – Knowledge based bioeconomy	3	1,2,3	2,3,5
Unit No. 4	Role of science and innovation policy in Bioeconomy	3	1,2,3	2,3,5
	Role of population, agriculture, food prices, healthcare in Bioeconomy	2	1,2,3	2,3,5
	Current and emerging business models	1	1,2,3	2,3,5
	Future of bioeconomy	9	1,2,4	5,6
	Bioeconomy 2030 – Policy Agenda	3	1,2,4	5,6
Unit No. 5	Bioeconomy Blueprint - Regulating the Bioeconomy	3	1,2,4	5,6
	Transformative technological innovation	2	1,2,4	5,6
	Cross-cutting issues	1	1,2,4	5,6
	Total Contact Hours		45	

Recommended Resources

- Bioeconomy: Shaping the Transition to a sustainable Biobased Economy. Iris Lewandowski (2018). Springer. ISBN 978-3-319-68151-1.
- Biorefinery 2030: Future Prospects for the Bioeconomy, Pierre-Alain Schieb, Honorine Lescieux-Katir, Maryline Thénot, Barbara Clément-Larosière (2016). Springer. ISBN 978-3-6625-1679-9.
- 3. The Bioeconomy to 2030: Designing a Policy Agenda, OECD
- 4. The Application of Biotechnology to Industrial Sustainability, OECD
- 5. National Bioeconomy Blueprint, White House, 2012.
- 6. Indian Bioeconomy Report 2020, 2021. BIRAC.

		Continuous Learning Assessments (50%)							End			
Bloom's	Level of	CLA-1 (10%)		CLA-2	CLA-2		CLA-3			Semester Exam (50%)		
Cognitiv	e lask	(10%)	(10%) $(10%)$ $(15%)$ $(15%)$									
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level 1	Remember	30%	_	30%	_	30%	_	30%	_	60%	_	
	Understand			0070		0070				00,0		
Level 2	Apply	70%		70%		70%		70%		40%		
	Analyse											
Level 3	Evaluate											
	Create											
Total		100%		100%	100%		100%		100%		100%	

Course Designer

Dr. Karthik Rajendran, Associate Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Nan	Name of the Course: Membrane Technology for Industrial Water Treatment											
Course Code		Course Category	Course Elective	L-T-P-C	2	1	0	3				
			(CE)									
Pre-Requisite		Co-Requisite		Progressive								
Course(s)		Course(s)		Course(s)								
Course Offering	Department of	Professional /										
Department	Environmental	Licensing Standards										
	Science and											
	Engineering											

- -. . .

Course Objectives

- 1. Understand the principles and theories behind various membrane processes used in industrial water treatment, such as reverse osmosis, ultrafiltration, nanofiltration, and microfiltration.
- 2. Gain insights into the practical applications of membrane technology in treating industrial wastewater and producing high-quality process water.
- 3. Stay updated on the latest innovations and emerging trends in membrane technology for industrial water treatment, fostering an awareness of cutting-edge developments in the field.
- 4. Develop problem-solving skills related to challenges in membrane technology applications, including fouling, scaling, and membrane degradation.

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Recall several terminologies related to membrane technology	1	80%	70%
2	Ability to illustrate different membrane technologies	2	80%	70%
3	Application of how to design and optimize membrane systems for different industrial water treatment scenarios, considering factors like flow rates, membrane materials, and system configurations.	3	80%	70%
4	Demonstrate methods for quality assurance and effective monitoring of membrane processes to ensure the production of water that meets industry standards.	3	80%	70%
5	Interpret real-world case studies and applications where membrane technology has been successfully applied for water treatment in various industries (e.g., municipal water supply, industrial wastewater treatment, desalination).	3	80%	70%

Course Outcome (COs)

	Program Learning Outcomes (PLO)														
CLOs	Engineering Knowledge	Problem	Design and Development	Analysis, Design and	Modern Tool and ICT Usage	Society and Multicultural	Environment and	Moral, and Ethical	Individual and Teamwork	Communicatio n Skills	Project Management	Self-Directed	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	-	2	1	-	3	-	2	-	1	3	1	2	2
Outcome 2	1	1	-	2	1	-	3	-	2	-	1	3	1	2	2
Outcome 3	1	1	-	2	1	-	3	-	2	-	1	3	1	2	2
Outcome 4	1	1	-	2	1	-	3	-	2	-	1	3	1	2	2
Course Average	1	1	-	2	1	-	3	-	2	-	1	3	1	2	2

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	Introduction on membrane technology	8	1	1,3,6
Unit No	Separation processes in process industry and in environmental application: basic features and relevance.	2	1	1,3,6
1	Fundamentals of membrane technologies.	3	1	1,3,6
	Membranes and membrane processes classification.	3	1	1,3,6
	Membranes and modules	8	2,3	2,3,7
Unit	Description of the main polymeric and ceramic membranes and of the manufacture techniques	5	2,3	2,3,7
NO. 2	Membrane geometries. Parameters and techniques for membrane characterization	2	2,3	2,3,7
	Technical features of modules: tubular, spiral wound, hollow fibers, plate, and frame.	2	2,3	2,3,7
	Main membrane processes for liquid streams	9	2,3,4	3,4,8
Unit	Reverse Osmosis, Nanofiltration, Ultrafiltration, Microfiltration.	3	2,3,4	3,4,8
NO. 3	Fields of application and conventional processes. Advantages and limitations.	2	2,3,4	3,4,8
	Problems and solutions based on RO, UF	4	2,3,4	3,4,8
	Membrane processes and Membrane Contactors	10	2,4	4,5,6,8
Unit	Ion Exchange membrane-based processes	3	2,4	4,5,6,8
1NO. 4	Thermal-based separation techniques and Membrane Distillation	5	2,4	4,5,6,8
	Emerging membrane technology: Forward Osmosis	2	2,4	4,5,6,8
	Fouling, Scaling, Concentration Polarization, and solutions	10	1,2,4	1,5,7
Unit	Fouling: characteristics and solution strategies.	5	1,2,4	1,5,7
No. 5	Membrane Cleaning Techniques for Fouling Control	5	1,2,4	1,5,7
	Total Hours	45		

		Continuous Learning Assessments (60%)									mester
Bloom's Level of Cognitive Task		CLA-1 (10%)		CLA-2	CLA-2 (10%)		CLA-3 (15%)		Гerm %)	Exam (40%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1	Remember	50%	-	30%	-	30%	-	30%	-	-	-
	Understand	50%	-	20%	-	30%	-	20%	-	50%	-
Level	Apply	-	-	50%	-	40%	-	50%	-	50%	-
2	Analyse	-	-	-	-	-	-	-	-	-	-
Level	Evaluate	-	-	-	-	-	-	-	-	-	-
3	Create	-	-	-	-	-	-	-	-	-	-
Total		100%		100%		100%		100%		100%	

Recommended Resources

- 1. Baker, R. W. (2023). Membrane technology and applications. John Wiley & Sons.
- 2. Li, N. N., Fane, A. G., Ho, W. W., & Matsuura, T. (Eds.). (2011). Advanced membrane technology and applications. John Wiley & Sons.
- 3. Nath, K. (2017). *Membrane separation processes*. PHI Learning Pvt. Ltd.
- 4. Nunes, S. P., & Peinemann, K. V. (Eds.). (2006). *Membrane technology: in the chemical industry*. John Wiley & Sons.
- 5. Strathmann, H. (2011). Introduction to membrane science and technology. John Wiley & Sons.
- 6. Shenvi, S. S., Isloor, A. M., & Ismail, A. F. (2015). A review on RO membrane technology: Developments and challenges. Desalination, 368, 10-26.
- 7. Guo, W., Ngo, H. H., & Li, J. (2012). A mini-review on membrane fouling. Bioresource technology, 122, 27-34.
- 8. Lutchmiah, K., Verliefde, A. R. D., Roest, K., Rietveld, L. C., & Cornelissen, E. R. (2014). Forward osmosis for application in wastewater treatment: A review. Water research, 58, 179-197.

Course Designer and Co-ordinator

Dr. Saikat Sinha Ray, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

ECOSYSTEM RESTORATION

Course Code		Course Category	CE	L-T-P-C	2	1	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards						

Course Objectives

- 1. Aims to provide a comprehensive idea about the ecosystem restoration and its importance.
- 2. Outline the carbon sequestration potential of different ecosystems.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	To gain the knowledge and skills needed to create a blueprint for ecosystem restoration.	2	80%	70%
2	Understand the steps, process, and plan for ecosystem restoration.	2	80%	70%
3	Understand the ecosystem services gain through restoring disturbed ecosystems.	3	80%	70%
4	Able to evaluate the carbon sequestration of various ecosystems through restoration.	4	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

CLOs		Program Learning Outcomes (PLO)													
	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	1	1	1	2	2	2	3	2	2	1	1	2			
Outcome 2	1	1	1	2	2	2	3	2	2	1	1	2			
Outcome 3	1	1	1	2	2	2	3	2	2	1	1	2			
Outcome 4	1	1	1	2	2	2	3	2	2	1	1	2			
Course Average	1	1	1	2	2	2	3	2	2	1	1	2			

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Introduction to Restoration Ecology	9	1	1, 2
	Background, Introduction, Concepts, Rationale for restoration	1	1	1,2
	The ecological context: a species population and landscape perspective.	2	1	1,2
	Ecological dynamics and ecological restoration,	2	1	1,2
	Biodiversity as a goal and driver of restoration.	2	1	1,2
	Landscape ecology and restoration processes.	2	1	1,2
Unit 2	Ecological foundations: Theory and the Restoration of Populations and Communities	9	1,2	1, 2
	Population and communities' restoration: From theory to practice	2	1,2	1,2
	Eco-physiological Constraints,	2	1,2	1,2
	Invasive species and restoration challenge,	2	1,2	1,2
	Heterogeneity theory, Assembly theory for restoring ecosystem structure and functioning.	3	1,2	1,2
Unit 3	Restoring Ecological Function	10	2, 3	2, 3
	Nutrient dynamics as determinants and outcomes of restoration	2	2,3	2,3
	Topographic heterogeneity theory and ecological restoration	2	2,3	2,3
	Recovery of ecosystem processes: Carbon and energy flows in restored forests, grasslands and wetlands	3	2,3	2,3
	Biodiversity and ecosystem functioning in restored ecosystems	3	2,3	2,3
Unit 4	Dimensions, Synthesis and Challenges of Restoration	9	2, 3	2, 3
	Evolutionary restoration ecology, Macroecology and the theory of Island biogeography	3	2,3	2,3
	The influence of climate change on the Science and Practice of restoration Ecology,	3	2,3	2,3
	Persistent and emerging themes in the linkage of theory to restoration practice.	3	2,3	2,3
Unit 5	Carbon Sequestration	8	2,3,4	2,3,4

Carbon sequestration via restoration in major forest biomes of the World	3	2,3,4	2,3,4
Nutrient and water limitations,	2	2,3,4	2,3,4
Importance through restoration. Restoration as a tool for carbon storage.	3	2,3,4	2,3,4
Total Hours	45		

Bloor	m's Level of	Con	End Semester				
Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (15%)	Exam (50%)	
Level	Remember	(09/	(09/	(09/	(09/	(0%)	
1	Understand	60 %	60 %	60%	60 %	60%	
Level	Apply	40%	40%	40%	40%	40%	
2	Analyse	40 /0	40 /0	40 /0	40 /0	40 %	
Level	Evaluate						
3	Create						
Total		100%	100%	100%	100%	100%	

Recommended Resources

- Margaret A. Palmer, Joy B. Zedler, & Donald A. Falk. 2016. Foundations of Restoration Ecology. Second Edition, Island Press, 2000 M Street NW, Suite 650, Washington, DC 20036.
- Jelte van Andel & James Aronson. 2006. Restoration Ecology: The New Frontier. Blackwell Publishing 350 Main Street, Malden, MA 02148-5020, USA.
- Andre F. Clewell & James Aronson. 2013. Ecological Restoration: Principles, Values, and Structure of an Emerging Profession, Second Edition. Island Press, 1718 Connecticut Avenue NW, Suite 300, Washington, DC 20009.
- Klaus Lorenz, & Rattan Lal. 2010. Carbon sequestration in forest ecosystems. Springer Dordrecht Heidelberg London New York.

Course Designer

Dr. Javid Ahmad Dar, Assistant Professor, Department of Environmental Science and Engineering, SRM University-*AP*

Name of the Course: Project Work

Course Code	EVS 511	Course Category	L-T-P-C	0	4	32 20
Pre-Requisite Course(s)		Co-Requisite Course(s)	Progressive Course(s)			
Course Offering Department	Environmental Science and Engineering	Professional / Licensing Standards				

Course Objectives

- 1. To understand how to identify a research problem and different solutions to solve it.
- 2. Experimental design, analysis, and scientific writing.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
1	Designing research plan for the project	3	80%	70%
2	Experimental design and learning analysis tools	4	80%	70%
3	Experimental work and data validation	4, 5	80%	70%
4	Results analysis and report writing	4, 5	80%	70%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

CLOs	Program Learning Outcomes (PLO)														
	Engineering Knowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool and ICT Usage	Society and Multicultural	Environment and Sustainability	Moral, and Ethical Awareness	Individual and Teamwork Skills	Communication Skills	Project Management and	Self-Directed and Life Long	PSO 1	PSO 2	PSO 3
Outcome 1	-	-	1	1	3	-	-	-	2	-	3	3	2	3	3
Outcome 2	-	3	1	1	2	-	3	-	3	-	3	2	2	2	2
Outcome 3	-	3	3	1	2	-	-	-	3	-	3	2	3	2	3
Outcome 4	-	3	3	1	2	-	-	-	3	-	3	2	3	2	3
Course Average	-	3	1	1	2	-	3	-	3	-	3	2	2	2	2

Course Unitization Plan

The students undergo a project work in the fourth semester. Each individual student is allotted with a supervisor. In the period of project work, student must identify the research problem, design the project work plan, complete the experimental/analytical work, and submit the project report. At the end of the project, student should be able to do research in his/her respective fields.

Continuous Learning Assessments (50%) End Semester Bloom's Level of CLA-1 CLA-2 Mid term 1 Mid Term 2 Exam (50%) **Cognitive Task** (10%) (10%) (15%) (15%) Th Prac Th Prac Th Prac Th Prac Th Prac 30% 60% Remember Level Understand 1 50% 40% Apply Level 2 Analyse 20% Evaluate Level 3 Create 100% Total 100%

Learning Assessment

Course Designers

Dr. Karthik Rajendran, Assistant Professor, Department of Environmental Science, SRM University AP