

Department of Electronics and Communication Engineering

MTech. VLSI Curriculum and Syllabus (Applicable to the students admitted from AY 2023-24 onwards)

School of Engineering and Sciences SRM University-AP, Andhra Pradesh

M. Tech in VLSI

Vision Statement

To be a globally recognized leader in the field of Electronics and Communications, by fostering innovation through cutting-edge collaborative research to inform interdisciplinary education.

Mission Statements

- Create inclusive and highly motivated individuals and leaders who promote diversity, innovation, creativity, and a high sense of responsibility towards societal progress.
- Strive for excellence by promoting interdisciplinary education and research through global collaborations.
- Deliver state-of-the-art research-based education that equips students with the skills to address contemporary challenges and contribute to the field's advancement.
- Foster a culture of innovation and entrepreneurship, by working closely with leading industry partners to translate ideas into real-life solutions.
- Aim to be a global knowledge hub by collaborating with leading institutions and industries.

Program Educational Objectives (PEOs)

PEO 1: Enable the postgraduate students to learn the fundamentals deeply and lay a strong foundation for their professional careers or higher studies.

PEO 2: Train the students to have hands-on VLSI System design skills which can be applied to solve industrial and research problems in an interdisciplinary environment.

PEO 3: Train the students to have comprehensive knowledge and skills in VLSI technologies which can be applied to the given problems in industrial and research multi-disciplinary environments.

PEO 4: Facilitate the development of effective communication skills, lifelong learning, leadership qualities, and ethical professional conduct across their higher education and career paths.

Mission of the Department to Program Educational Objectives (PEO) Mapping

	PEO 1	PEO 2	PEO 3	PEO 4
Mission Statement 1	3	3	2	2
Mission Statement 2	3	3	2	2
Mission Statement 3	3	2	3	2
Mission Statement 4	3	2	3	3
Mission Statement 5	3	3	3	2

Program Outcomes (PSOs)

PSO-1: Recognize, research, and resolve a wide range of practical issues in the field of VLSI.

PSO-2: Develop skills to build and create systems in the expanding fields of VLSI to solve the problems of the modern economy.

PSO-3: Demonstrate exemplary leadership attributes and actively pursue the advancement of many entities, including organizations, the environment, and society at large by upholding their professional obligations with a strong commitment to ethical conduct.

	Program Learning Outcomes (PLO)												
CL Os	Engine ering Knowl edge	Design / Develo pment of Solutio ns	Conduc t Investig ations of Comple x Proble ms	Mo dern Too 1 Usa ge	The Engi neer and Soci ety	Enviro nment and Sustain ability	Eth	Indivi dual and Team work	Commun ication	Life- long Lear ning	P S O 1	P S O 2	P S O 3
PE 0 1	3	3	3	3	2	1	3	2	2	2	3	2	2
PE O 2	3	3	3	3	3	1	3	1	2	2	3	2	3
PE 0 3	3	3	3	3	3	3	3	3	3	3	2	3	3
PE 0 4	2	3	2	2	2	3	3	1	2	2	3	3	3

Programme Outcomes (POs)

PO 1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2: Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and cultural, societal, and environmental considerations.

PO 3: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods, including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems.

PO 4: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.

PO 5: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 6: Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.

PO 7: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 8: Individual and Teamwork: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.

PO 9: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 10: Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

			Seme	ster		
Category	Ι	II	III	IV	Total	%
Ability Enhancement Courses - AEC	1	1	0	0	2	2.5
Value Added Courses - VAC	1	1	0	0	2	2.5
Skill Enhancement Courses - SEC	2	2	0	0	4	5
Foundation / Interdisciplinary Courses - FIC	3	0	0	0	3	3.75
CC / SE / CE / TE / DE / HSS	16	16	0	0	32	42.5
Minor / Open Elective - OE	0	0	0	0	0	0
(Research/ Design/ Industrial Practice/Project/Thesis/Internship) -RDIP	0	3	17	15	35	43.75
Grand Total	22	26	17	15	80	100

M. Tech Curriculum in VLSI- 2023

	SEMESTER I									
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	C	LH	
1	VAC	AEC	VAC 501	Community Engagement and Social Responsibility	0	0	1	1*	30	
2	AEC	AEC	AEC 502	Research Seminar	0	0	1	1	30	
3	SEC	SEC	SEC 502	Design Thinking	1	0	1	2	60	
4	FIC	FIC	FIC 503	AI/ML Techniques	2	0	1	3	90	
5	Core	CC	VLS 501	CMOS Digital IC Design	3	0	1	4	120	
6	Core	CC	VLS 502	CMOS Analog and Mixed Signal IC Design	3	0	1	4	120	
7	Core	CC	VLS 503	VLSI Technology	3	1	0	4	120	
8	Core	CC	VLS 504	VLSI Physical Design	3	0	1	4	120	
	Semester Total 15 1 7 22 690									

	SEMESTER II										
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	C	LH		
1	VAC	AEC	VAC 502	Community Engagement and Social Responsibility	0	0	1	1*	30		
2	AEC	AEC	AEC 503	Research Seminar	0	0	1	1	30		
3	SEC	SEC	SEC 103	Entrepreneurial mindset	1	0	1	2	60		

					100	A REAL PROPERTY.	Andhra	Pradesh	
4	Elective	CE	CE	Industry - Core Elective	3	0	1	4	120
5	Elective	CE	CE	Industry - Core Elective		0	1	4	120
6	Core	CC	VLS 505	VLSI Testing and Verification	3	0	1	4	120
7	Core	CC	VLS 506	Semiconductor Device Modelling	3	0	1	4	120
8	Core	CC	VLS 507	Advanced HDL based FPGA Design	3	0	1	4	120
9	RDIP	RDIP	VLS 508	Project Management	0	2	1	3	90
				Semester Total	16	2	9	26	810

	SEMESTER III										
S.No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH		
1	RDIP	RDIP	VLS 509	Thesis I	0	0	14	14	420		
2	RDIP	RDIP	VLS 510	Industrial Practice	0	0	3	3	90		
				Semester Tot	1 0	0	17	17	510		

	SEMESTER IV										
S.No	Category	Sub- Category	Course Code	Course Title		L	T/D	P/Pr	С	LH	
1	RDIP	RDIP	VLS 511	Thesis II		0	0	15	15	450	
	Semester Total 0 0 15 15 450										

Note: L-T/D-P/Pr and the class allocation is as follows.

- a. Every 1 credit of Lecture/Tutorial per week is equal to one contact hour of 60 minutes
- b. Every 1 credit of Discussion per week is equal to two contact hours of 60 minutes
- c. Every 1 credit of Practical per week is equal to two contact hours of 60 minutes
- d. Every 1 credit of Project per week is equal to two contact hours of 60 minutes (timetable not required)

S.No	Semester	Credits
1	Ι	22
2	II	26
3	III	17
4	IV	15
	Total	80

	List of Core Electives										
S. No	Category	Sub- Category	Course Code	Course Title	L	T/D	P/Pr	С	LH		
1	CE	CE	VLS 533	Semiconductor Device Modelling	3	0	1	4	120		
2	CE	CE	VLS 535	Signal Processing and Computer vision	3	0	1	4	120		
3	CE	CE	VLS 562	Sensor Technology and MEMS	3	0	1	4	120		
4	CE	CE	VLS 530	CAD for VLSI	3	0	1	4	120		
5	CE	CE	VLS 555	More than Moore's electronics	3	0	1	4	120		

SEMESTER I

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

Design Thinking

Course Code	SEC 502	Course Category	SEC	L-T-P-C	1	0	1	2
Pre-Requisite Course(s)	NA	Co-Requisite Course(s)	NA	Progressive Course(s)				
Course Offering Department	Management	Professional / Licensing Standards		NA				

Course Objectives

- 1. Familiarize with the principles of Design Thinking
- 2. Learn to apply the principles of Design Thinking
- 3. Apply Design Thinking to solve problems.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Grasp the Concepts and process of Design Thinking	2	85	90
Outcome 2	Learn the process of Design Thinking	2	85	90
Outcome 3	Solve a problem using Design Thinking Principles	4	75	65

Course Articulation Matrix (CLO) to (PLO)

CLOs		Program Learning Outcomes (PLO)												
	Management Knowledge	Analytical Reasoning and	Critical and Reflective	Strategic Thinking and	Modern Tools and ICT Usage	Environment and	Moral, Multicultural	Individual and Teamwork	Communicatio n Skills	Leadership Readiness	Self-Directed and Lifelong	PSO 1	PSO 2	PSO 3
Outcom e 1	3										1	3	1	3

Outcom e 2	3					3			2	3	2	3
Outcom e 3	3	3	3	3		3	3	3	3	3	3	3
Course Averag e	3	3	3	3		3	3	3	2	3	2	3

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Incubation and understanding			1,2
1.	Understanding of Design Thinking & its Importance	4	1	1,2
2.	Importance of Design Thinking	3	1	1,2
3.	Pillars of Design Thinking	3	1	1,2
Unit 2	Process – Understanding the Stages of Design Thinking			1,2
4.	Stage 1- Empathy	2	2	1,2
5.	Stage 2 - Define	2		
6.	Stage 3 – Ideate	2		
7.	Stage 4 – Prototype	2	2	1,2
8.	Stage 5 – Test & Implement	2	2	1,2
Unit 3	Application			
9.	Project Work	7	3	1,2
10.	Viva	3	3	1,2
Total C	ontact Hours		30	

Recommended Resources

1. Design Thinking – Techniques and Approaches, N. Siva Prasad

Other Resources

- 1. HBS Online Design Thinking & Innovation course material
- 2. Case studies
- 3. Nigel Cross, Design Thinking, BERG Publishing, (2011)
- 4. Thomas Lockwood, Design Thinking- Integrating Innovation, Customer Experience and Brand Value, Design Management Institute, (2009)

Learning Assessment (Theory)

Bloom's	Level of Cognitive Task	Continuous Learning	Assessments (100%)
	lever of Cognitive Task	CLA-1 (50%)	CLA-2 (50%)
Level 1	Remember	20	40
	Understand		
Level 2	Apply	30	30
	Analyse		
Level 3	Evaluate	50	30
Create			
	Total	100%	100%

Course Designers

a. Satyanarayana Duvvuri, Visiting Faculty, Paari school of business, SRM University AP.

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

AI/ML Techniques

Course Code	FIC 503	Course Category	Core	L-T-P-C	2	0	1	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	Nil	Progressive Course(s)	Ni	I		
Course Offering Department	ECE	Professional / Licensing Standards						
Board of Studies Approval Date		Academic Council Approval Date						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To familiarize the domains of supervised and unsupervised learning.

Objective 2: To understand and apply various binary classifiers.

Objective 3: To understand and apply clustering methods.

Objective 4: To understand and analyze Feedforward neural networks and CNNs

Objective 5: Able to work on real time projects related to AI/ML

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Familiarize supervised and unsupervised learning	1	85%	80%
Outcome 2	Understand and Apply various binary classifiers	1, 2	80%	75%
Outcome 3	Understand and Apply clustering methods	1, 2	85%	70%
Outcome 4	Understand and Evaluate Feedforward neural networks	3	80%	70%
Outcome 5	Understand the CNNs and able to work on real time projects	2,3,4	75%	70%

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

CLO	Program Learning Outcomes (PLO)

	Engin eerin g Know ledge	Pro ble m Ana lysis	Desig n and Devel opme nt	Anal ysis, Desi gn and Res earc h	Mo der n Too I and ICT Usa ge	Societ y and Multic ultura I Skills	Enviro nment and Sustai nabilit y	Mor al, and Ethic al Awar enes s	Indiv idual and Tea mwo rk Skills	Commu nicatio n Skills	Projec t Mana geme nt and Financ e	Self - Dire cte d and Lifel ong Lea rnin g	P S O 1	P S O 2	P S O 3
Out com e 1	1	1	1	1	1							1	1	1	1
Out com e 2	2	3	2	3	2				2	1		1	1	2	3
Out com e 3	2	2	2	3	3				2	1		1	1	2	2
Out com e 4	2	3	3	3	3				2	1		1	2	3	3
Out com e 5	3	3	2	3	3				2	1		2	2	2	2
Cou rse Ave rage	2	3	2	3	3				2	1		1	1	2	2

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	Introduction	6		
	Introduction to machine learning	1	1	1, 2,3
	Supervised learning	1	1	1, 2,3
	Unsupervised learning	1	1	1, 2,3
	Linear regression	2	1	1, 2,3
	Logistic regression	1	1	1, 2,3

Unit 2	Classifiers	7		
	Naive Bayes	1	2	1, 2,3
	Support Vector Machines	2	2	1, 2,3
	K-Nearest Neighbor	1	2	1, 2,3
	Decision Trees	2	2	1, 2,3
	Random forest	1	2	1, 2,3
Unit 3	Clustering	6		
	Clustering in machine learning	1	3	1, 2,3
	Different types of clustering algorithms	1	3	1, 2,3
	K-Means clustering	2	3	1, 2,3
	Loss functions in regression and classification	1	3	1, 2,3
	Bias-variance trade off	1	3	1, 2,3
Unit 4	Feedforward neural networks	7		
	Introduction to Neural Networks	1	4	1, 2,3
	Activation functions	1	4	1,2,3
	Feed-forward Network	2	4	1, 2,3
	Backpropagation algorithm	2	4	1, 2,3
	Introduction to convolutional neural network (CNN)	1	5	1, 2,3
Unit 5	Applications of AI/ML	6		
	Applications in VLSI	3	5	4
	Applications in IoT	3	5	4
Total Co	ntact Hours	45		

Recommended Resources

- 1. Christopher M. Bishop, "Pattern Recognition and Machine Learning" by Springer, 2007.
- 2. Tom M. Mitchell, "Machine Learning", First Edition by Tata McGraw-Hill Education, 2013.
- 3. Luis G. Serrano, "Grooking Machine Learning" 2nd Edition, Manning Publications, 2021.
- 4. Reference papers from various journals such as IEEE, Elsevier etc.

Learning Assessment

Continuous Learning Assessments (50%)	

Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		CLA-3 (15%)		End Semester Exam (50%)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1	Remember	40%	40%	60%	40%	40%	40%	60%	40%	30%	40%
	Understand										
Level 2	Apply	60%	60%	40%	60%	60%	60%	40%	60%	70%	60%
	Analyse										
Level 3	Evaluate										
Create											
Total		100%	100%		100%		100%		-	100%	

Course Designer(s)

Dr. Sudhakar Tummala. Asst. Professor. And Dr. V. Udaya Sankar, Asst. Professor, Dept. Of ECE. SRM University – AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

CMOS Digital IC Design

Course Code	VLS 501	Course Category	Core Course	L-T-P-C	3	0	1	4
Pre-Requisite		Co-Requisite Course(s)	CC	Progressive				
Course(s)		co-requisite course(s)	cc	Course(s)				
Course Offering		Professional /	IEEE, Microsoft, Oracle, Max Planck					
Department	ECE	Licensing Standards		Research etc.				
Board of Studies		Academic Council						
Approval Date		Approval Date						

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To understand the fundamental principles of CMOS technology, including the operation of MOS transistors, logic gates, and basic building blocks.
- **Objective 2:** To learn the techniques for designing and analyzing CMOS digital circuits, including combinational and sequential logic circuits.
- **Objective 3:** To gain proficiency in creating layout designs for CMOS circuits (considering area, power, and performance) and understand the importance of timing in digital circuits, and learn how to perform timing analysis for CMOS circuits.
- **Objective 4:** To apply the knowledge gained in the course through hands-on projects that involve the design, simulation, and layout of CMOS digital circuits.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome	Understand the fundamental principles of			
1	CMOS Technology along with its advantages	2	85%	80%
Outcome 2	Design both combinational & sequential circuits using CMOS technology	3	80%	75%
Outcome	Create layout designs for CMOS digital		85%	70%
3	circuits and understand the impact of the	3		
	fabrication process on circuit design			
Outcome 4	Apply theoretical knowledge to real-world digital IC design projects	3	80%	70%

Course Outcomes / Course Learning Outcomes (CLOs)

		Program Learning Outcomes (PLO)											
CL Os	Engin eering Knowl edge	Design / Develo pment of Solutio ns	Conduc t Investi gations of Comple x Proble ms	Mo dern Too 1 Usa ge	The Engi neer and Soci ety	Enviro nment and Sustain ability	Ethics	Indiv idual and Team Work	Commu nication	Life- long Lear ning	P S O 1	P S O 2	P S O 3
Outc													
ome 1	3	2	2	2	2	3	2	2	2	3	3	2	2
Outc ome 2	3	3	3	2	2	1	2	2	3	3	2	3	2
Outc ome 3	3	3	3	3	2	1	2	2	3	2	3	3	2
Outc ome 4	3	3	3	3	2	3	3	3	3	3	3	3	3
Cou rse Ave rage	3	3	3	2	2	2	2	2	3	3	3	3	2

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan - Theory

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	
		Hours		
Unit	MOSFET Introduction and Layout of CMOS	0		
1	Logic Circuits	•		
1.	Basic MOSFET Characteristics- Threshold			1,2
	Voltage, Body Bias concept, Current- Voltage	2	1	
	Characteristics – Square-Law Model			
2.	MOSFET Modeling- Drain-Source Resistance,	1	1	1,2
	MOSFET Capacitances	1	1	
3.	Geometric Scaling Theory– Full-Voltage Scaling,			1,2
	Constant-Voltage Scaling, Challenges of MOSFET	2	1	
	Scaling			
4.	CMOS fabrication processing steps	1	1	1,2,4,6
5.	Design Rules, Stick diagram, Layout of logic	0	1.2	
	circuits	2	1,5	
6.	Layout of logic circuits, latch-up	1	1,3	1,2,4,6
Unit	Switching Properties of MOSFET and CMOS	Q		
2	Inverter	ð		

7.	Static and dynamic characteristics of Pass Transistors	1	1,2	1,2
8.	Transmission Gate, TG based logic circuits, Introduction to CMOS Inverter	2	1,2	1,2
9.	CMOS Inverter - DC Characteristics, Noise Margins, Layout Considerations	1	1,2	1,2
10.	Inverter Switching Characteristics, Transient Effects on the VTC, RC Delay Modeling, Elmore Delay, Output Capacitance	2	1,2	1,2
11.	Inverter Design – DC Design, Transient Design, Driving Large Capacitive Loads	2	1,2	1,2
Unit 3	Static CMOS Logic Elements & Power Dissipation in CMOS Logic Circuits	9		
12.	CMOS NAND Gate, CMOS NOR Gate	1	2,3	1,2,3
13.	CMOS AND, OR, NOT, and Complex Logic Functions	2	2,3	1,2,3
14.	CMOS SRAM and DRAM Cell	1	2,3	1,2,3
15.	Dynamic Power Dissipation– Switching Power Dissipation	2	2,3	1,2,3
16.	Short Circuit Power Dissipation, Glitching Power Dissipation	1	1,3	1,2,3
17.	Static Power Dissipation, Diode Leakage Current, Subthreshold Leakage Current	2	1,3	1,2,3
Unit 4	Dynamic Logic Circuit Concepts and CMOS Dynamic Logic Families	9		
18.	Charge Leakage in CMOS circuits	2	2,4	1,2,5
19.	Charge Sharing, Dynamic RAM Cell	2	2,4	1,2,5
20.	Clocked-CMOS	2	2,4	1,2,5
21.	Pre-Charge/ Evaluate Logic, Domino Logic	2	2,4	1,2,5
	CMOS Single-Phase Logic	1	2,4	1,2,5
Unit 5	Issues In Chip Design	8		
22.	ESD Protection	2	2,3,4	1,2,5
23.	On-Chip Interconnects – Line Parasitics	1	2,3,4	1,2,5
24.	Modeling of the Interconnect Line	2	2,3,4	1,2,5
25.	Clock Distribution	2	2,3,4	1,2,5
26.	Input-Output circuits	1	2,3,4	1,2,5
	Total		43	

Recommended Resources

- 1. Rabaey, J.M., Chandrakasen, A.P. and Nikolic, B., Digital Integrated Circuits A Design perspective, Pearson Education (2007) 2nd ed.
- 2. Kang, S. and Leblebici, Y., CMOS Digital Integrated Circuits Analysis and Design, Tata McGraw Hill
- 3. J P Uyemura, CMOS Circuit Design, Springer
- 4. Weste, N.H.E. and Eshraghian, K., CMOS VLSI Design: A Circuits and Systems Perspective, eddision Wesley (1998) 2nd ed.
- 5. Baker, R.J., Lee, H. W. and Boyce, D. E., CMOS Circuit Design, Layout and Simulation, Wiley IEEE Press (2004) 2nd ed.

6. Weste, N.H.E., Harris, D. and Banerjee, A., CMOS VLSI Design, Dorling Kindersley (2006) 3rd ed.

Other Resources

1. James D. Plummer, Michael D. Deal, Peter B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Pearson Education, 2009.

Learning Assessment

Dlags	m ² a Laval of	Continu	ous Learnin	g Assessment	ts (50%)	End Semester		
Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (15%)	CLA-3 (10%)	Exam (50%)		
Level 1	Remember	400/	600/		500/	200/		
	Understand	40%	00%		30%	50%		
Loval 2	Apply	600/	400/	200/	500/	600/		
Level 2	Analyse	00%	40%	20%	30%	00%		
Laval 2	Evaluate			800/		100/		
Level 5	Create			80%		10%		
	Total	100%	100%	100%	100%	100%		

Course Designer(s)

Dr. M. Durga Prakash, Asst. Professor. Dept. Of ECE. SRM University - AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

CMOS Analog and Mixed Signal IC Design

Course Code	VLS 502	Course Category	Core Course (CC)	L-T-P-C	3	0	1	4
Pre-Requisite		Co-Requisite	VLSI Analog	Progressive				
Course(s)		Course(s)	IC Design	Course(s)				
Course Offering		Professional /	IEEE, Microsoft, Oracle, Max Planck Resear				eard	ch
Department	ECE	Licensing Standards	etc.					

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand the fundamentals of Analog IC Design, including the single-stage amplifiers and Differential Amplifiers

Objective 2: To learn the general considerations for Operational Amplifiers designing and performance of various Op-Amp topologies

Objective 3: To understand the stability in feedback systems and noise in mixed signal IC design

Objective 4: To apply the data converters knowledge gained in the course through hands-on projects that involve the design, simulation, and layout of CMOS analog circuits.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome	Understand the fundamental of analog IC			
1	Design, including the single-stage amplifiers	2	85%	80%
	and Differential Amplifiers			
Outcome	Design operational amplifiers and performance	3	80%	75%
2	of various Op-Amp topologies	5		
Outcome	Create layout designs for operational amplifier		85%	70%
3	circuits and understand the stability in	3		
	feedback system and noise performance			
Outcome	Apply theoretical knowledge to real-world	2	80%	70%
4	analog and digital converter IC design projects	3		

		Program Learning Outcomes (PLO)											
CL Os	Engin eering Knowl edge	Design / Develo pment of Solutio ns	Conduc t Investi gations of Comple x Proble ms	Mo dern Too 1 Usa ge	The Engi neer and Soci ety	Enviro nment and Sustain ability	Eth ics	Indiv idual and Team Work	Commu nication	Life- long Lear ning	P S O 1	P S O 2	P S O 3
Outc													
ome 1	3	2	2	2	2	3	2	2	2	3	3	2	2
Outc ome 2	3	3	3	2	2	1	2	2	3	3	2	3	2
Outc ome 3	3	3	3	3	2	1	2	2	3	2	3	3	2
Outc ome 4	3	3	3	3	2	3	3	3	3	3	3	3	3
Cou rse Ave rage	3	3	3	2	2	2	2	2	3	3	3	3	2

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References
Unit 1	Introduction to Analog Integrated Design	10		
1.	Models for analog design, body transconductance, Single-stage Amplifiers – CS stage, diode connected load	2	1	1,2
2.	Current source load and source degeneration Review of CD and CG stages	2	1	1,2
3.	Cascode stage & folded Cascode concepts	1	1	1,2
4.	Design of amplifier from specifications Differential Amplifiers	1	1	1,2,4
5.	MOS differential pair, Small signal operation. half circuit analysis common mode response	2	1,3	
6.	Differential amplifier with active load, common mode gain, and CMRR. Frequency response of the differential amplifier.	2	1,3	1,2,4
Unit 2	Operational Amplifiers	10		
7.	General considerations – performance parameters	1	1,2	1,2

8.	One-Stage Op amps – Cascode Op-Amps	2	1.2	1,2
	Telescopic Op-Amps		1,2	
9.	Folded Cascode Op-Amps	1	1,2	1,2
10.	Two-Stage Op amps, Gain boosting	1	1,2	1,2
11.	Comparison of performance of various Op-Amp	2	1.2	1,2
	topologies		1,2	
12.	Design of Op-Amps from specifications.	2	1,2	1,2
13.	Review of bode rules	1	1,2	1,2
Unit 3	Stability In Feedback Systems	9	1,2	1,2
15.	Problem of instability, Stability condition	1	2.3	1,2,3
16.	Gain-phase crossovers, phase margin	2	2,3	1,2,3
17.	Frequency compensation: frequency response of cs amplifier, Miller effect	1	2,3	1,2,3
18.	Poles in a system, Pole-splitting, miller compensation	2	2,3	1,2,3
19.	Two-stage Op-Amp - compensation techniques	1	1,3	1,2,3
20.	Closed-loop stability, optimal phase margin.	2	1,3	1,2,3
Unit	Noise	9		
4		2		1.2.5
21.	MOSFET noise models, types of noise, thermal noise, flicker noise	2	2,4	1,2,5
22.	Representation of noise in circuits, Noise in single- stage amplifiers	2	2,4	1,2,5
23.	Integrated Oscillators: Ring oscillators	2	2,4	1,2,5
24.	LC oscillators – Cross coupled oscillators, VCO.	2	2,4	1,2,5
Unit 5	Data Converters	7		
25.	DAC and ADC Specifications, Current Steering DAC	2	2,3,4	1,2,5
26.	Charge Scaling DAC, Cyclic DAC	2	2,3,4	1,2,5
27.	Pipeline DAC, Flash ADC	2	2,3,4	1,2,5
28.	Pipeline ADC, Integrating ADC, Successive	2	2,3,4	1,2,5
	Approximation ADC.			
	Total		45	

Recommended Resources

- 1. Design of Analog CMOS Integrated Circuits, Behzad Razavi, 2002, Mc GrawHill Edition, ISBN: 0-07-238032-2.
- 2. CMOS Circuit Design, Layout and Simulation, R. Jacob Baker, Harry W. Li and David E. Boyce, 2002, IEEE Press, ISBN: 81-203-1682-7.
- 3. CMOS Mixed-signal Circuit Design, R. Jacob Baker, 2009, IEEE Press, ISBN: 978- 81-265-1657-5.
- 4. Analysis and Design of Analog Integrated Circuits, Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, "", 4th edition, 2008, Wiley India Private Limited, ISBN:978-8126515691.
- Fundamentals of Microelectronics, Behzad Razavi, 2nd Edition, 2013, Wiley, ISBN- 10: 1118156323

Learning Assessment

Dieo	Bloom's Level of		ous Learnin	g Assessment	ts (50%)	End Semester		
Cognitive Task		CLA-1 (10%)	Mid-1 (15%)	CLA-2 (15%)	CLA-3 (10%)	Exam (50%)		
Level 1	Remember	400/	600/		500/	200/		
	Understand	40%	00%		30%	30%		
Loval 2	Apply	600/	400/	200/	500/	600/		
Level 2	Analyse	00%	40%	20%	30%	00%		
Larval 2	Evaluate			200/		100/		
Level 5	Create			80%		10%		
	Total	100%	100%	100%	100%	100%		

Course Designer(s)

a. Dr. M. Durga Prakash. Asst. Professor. Dept. Of ECE. SRM University - AP

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

VLSI Technology

VLS 503	Course Category	CC	L-T-P-C	3104
	Co-Requisite Course(s)		Progressive Course(s)	
ECE	Professional / Licensing Standards	IEEE, M	licrosoft, Cadence	
	Academic Council Approval Date			
	VLS 503 ECE	VLS Course Category 503 Co-Requisite Course(s) Co-Requisite Course(s) Professional ECE / Licensing Standards Academic Council Approval Date	VLS 503 Course Category CC Sol Co-Requisite Course(s) CC ECE Professional / Licensing Standards IEEE, M Academic Council Approval Date Approval Date	VLS 503 Course Category CC L-T-P-C Co-Requisite Course(s) Progressive Course(s) Progressive Course(s) ECE Professional / Licensing Standards IEEE, Microsoft, Cadence Academic Council Approval Date Approval Date

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To study the various processes of IC fabrication.

Objective 2: To study the device fabrication process.

Objective 3: To understand various issues of defects and stresses in the films.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Outline the basics of semiconductor crystal properties	2	80%	75%
Outcome 2	Identify the fundamentals of IC fabrication	3	80%	75%
Outcome 3	Illustrate the different methods involved in VLSI fabrication process.	4	80%	75%
Outcome 4	Appreciate the advanced methods involved in IC fabrication.	4	80%	75%
Outcome 5	Build the knowledge of process integration-of devices	4	80%	75%
Outcome 6	Build the knowledge of Packaged the devices	4	80%	75%

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

	Enginee ring Knowle dge	Design and Develop ment of Solutions	Conduct Investigat ions of Complex Problems	Mod ern Tool Usag e	The Engin eer and Societ y	Environ ment and Sustainab ility	Ethi cs	Individ ual and Teamw ork	Communic ation	Lifelo ng Learn ing	PS O 1	PS O 2	PS O 3
Outco me 1	3	1	1	2	2	2	2	2	2	2	2	2	2
Outco me 2	3	1	1	2	2	2	2	2	2	2	2	2	2
Outco me 3	2	3	3	2	3	3	3	2	3	2	3	3	3
Outco me 4	2	3	3	2	3	3	3	3	3	1	3	3	3
Outco me 5	2	3	3	2	3	3	3	3	3	2	3	3	3
Outco me 6	2	3	3	2	3	3	3	3	3	1	3	3	3
Cours e Avera ge	2	3	3	2	3	3	3	2	3	2	3	3	3

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References
Unit 1	Clean Room Environment and Wafer Preparation	10		
1.	Crystal Structure of a solid	1	1	1,2
2.	Defects in materials	1	1	1,2
3.	Types of clean room, Contamination in clean room	2	1,2	1,2
4.	Electronic Grade Silicon, Czochralski crystal growing	2	1,2	1,2,4,6

5.	Silicon Shaping	2	1,2	
6.	Wafer cleaning processes and wet chemical etching techniques	2	1,2	1,2,4,6
Unit 2	Oxidation, Diffusion, and Implantation	12		
7.	Kinetics of Silicon dioxide growth both for thick, thin, and ultrathin films	3	2,3	1,2
8.	Oxidation Techniques and Systems Models of Diffusion in Solids	2	2,3	1,2

9.	Defects due to oxidation	2	1,2,3	1,2
10.	Solid State diffusion modelling and technology	2	1,2,3	1,2
11.	Implantation Equipment, Principles, techniques and applications	2	2,3	1,2
12.	Removal of implant damage	1	2,3	
Unit 3	Epitaxial Growth, Metallization	12		
13.	CVD and MBE	3	2,3	1,2,3
14.	Defects in Epitaxial Layer Dielectric Deposition	2	2,3	1,2,3
15.	PECVD and Rapid Thermal Annealing	2	2,3,4	1,2,3
17.	E-beam evaporation	2	2,3,4	1,2,3
18.	Sputtering and Thermal Evaporation	2	2,3	1,2,3
19.	Etching	1	2,3,4	1,2,3
Unit 4	Lithography	6		
20.	Optical Lithography	2	2,3,4	1,2,5
21.	E-beam lithography	2	2,3,4	1,2,5
22.	X-ray	1	2,3,4	1,2,5
23.	Other Lithography techniques	1	2,3,4	1,2,5
Unit 5	Fabrication and Packaging	5		
24.	Fabrication of MOSFET	2	3,4,5	1,2,5
25.	Process to Package a chip (Dicing, Attaching, wire bonding, Chip package header)	2	2,3,4	1,2,5
26.	Fabrications of other devices	1	2,3,4	1,2,5
	Total		45	

Learning Assessment (Theory)

Bloom'	's Level of	Cont	End Semester			
Cogni	tive Task	CLA-1 (15%) Mid-1 (15%) CLA-2 (10%) CLA-3 (10%)		Exam (50%)		
Level	Understand	10%	40%	20%	30%	30%
1,2 Apply		40%	40%		3070	3070
Understand		400/	400/	400/	200/	500/
Level 2,3	Apply	40%	40%	40%	30%	30%
Level Apply		20%	20%	40%	40%	20%
3,4	Analyse			40%		20%
Total		100%	100%	100%	100%	100%

Course Designer(s)

Dr. Manas Ranjan Tripathy. Asst. Professor. Dept. Of ECE. SRM University – AP

		v LSI I Hysica	n Design					
Course Code	Course CodeVLS 504Course Category		Technical Elective(TE)	L-T-P-C	3	0	1	4
Pre-Requisite	VLSI	Co-Requisite		Progressive				
Course(s)	Design	Course(s)		Course(s)				
Course Offering	ECE	Professional /						
Department		Licensing						
		Standards						
Board of Studies		Academic Council						
Approval Date		Approval Date						

VLSI Physical Design

Course Objectives / Course Learning Rationales (CLRs)

- **Objective 1:** To understand the requirements of VLSI automation Tools.
- **Objective 2:** To understand the requirements Proper placement and Routing of Circuits.
- Objective 3: To familiarize with methods and algorithms for efficient Floor Planning and Routing
- **Objective 4:** To understand different circuit level techniques for logic synthesis.
- **Objective 5:** To understand how high-level synthesis is carried out for proper allocation, scheduling and assignment.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe various VLSI Automation Tools	2	70%	65%
Outcome 2	Implement ideas on Placement and Partitioning of Circuits	3	70%	65%
Outcome 3	Identify concepts and Algorithms of Floor planning and Routing	3	70%	65%
Outcome 4	Develop circuit level techniques and apply in logic Synthesis	3	70%	65%
Outcome 5	Working on High Level Synthesis of Circuits	4	70%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pı	ogram	Learnir	ng Out	comes	(PLO)					
CL Os	Engin eering Knowl edge	Prob lem Anal ysis	Design and Develo pment	Anal ysis, Desi gn and Rese arch	Mo der n Too l and ICT Usa ge	Societ y and Multic ultural Skills	Enviro nment and Sustain ability	Mora l, and Ethic al Awar eness	Indivi dual and Team work Skills	Commu nication Skills	Project Manag ement and Financ e	Self- Dire cted and Life Lon g Lear ning	P S O 1	P S O 2	P S O 3
Outc ome 1	3	3	3	2	1		2					3	3	1	2
Outc ome 2	3	3	3	2	2	1	2		3			2	3	2	2
Outc ome 3	3	3	3	2	2		2		3			3	3	2	2

Outc ome 4	3	3	3	3	2	1	2	3		2	3	2	2
Outc ome 5	3	3	3	2	2	1	2	2		2	3	2	2
Cou rse Ave rage	3	3	3	2	2	1	2	3		2	3	2	2

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit 1	VLSI DESIGN AUTOMATION TOOLS	16		
1.	Algorithms and system design, Structural and logic design	2	1	1
2.	Transistor level design, Layout design	2	1	1
3.	Verification methods	1	1	1
4.	Design management tools	1	1	1
5.	Layout compaction	2	2	1
6.	placement and routing, Pin Assignment	2	2	1
7.	Design rules, symbolic layout, Applications of compaction	2	2	2
8.	Formulation methods, Algorithms for constrained graph compaction	2	2	2
9.	Circuit representation, Wire length estimation, Placement algorithms, Partitioning algorithms	2	2	2
Unit 3	FLOOR PLANNING AND ROUTING	10		
10.	Floor planning concepts	2	3	1,2
11.	Shape functions and floor planning sizing	2	3	1,2
12.	Local routing, Area routing	2	3	1,2
13.	Channel routing	2	3	1,2
14.	Global routing and its algorithms.	2	3	1,2
Unit 4	SIMULATION AND LOGIC SYNTHESIS	10		
15.	Gate level and switch level modelling and simulation	1	4	2,3

				Andura Fradesh	
16.	Introduction to combinational logic synthesis	1	4	2,3	
17.	STA	2	4	2,3	
18.	ROBDD principles, Implementation, construction and manipulation	2	4	2,3	
19.	Two level logic synthesis.	2	4	3,4	
20.	Timing Closure	2	4	3,4	
Unit 5	HIGH-LEVEL SYNTHESIS	11			
21.	Hardware model for high level synthesis	2	5	3,4	
22.	Internal representation of input algorithms	1	5	3,4	
23.	Allocation, assignment, and scheduling	2	5	3,4	
24.	Scheduling algorithms, Aspects of assignment	1	5	3,4	
25.	High level transformations	1	5	3,4	
	Total		47		

Recommended Resources

1. S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley ,1998.

2. N.A.Sherwani, "Algorithms for VLSI Physical Design Automation", (3/e), Kluwer, 1999...

3. S.M. Sait, H. Youssef, "VLSI Physical Design Automation", World scientific, 1999

4. <u>cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/innovus-implementation-system-ds.pdf</u>

		Contin	End Semester			
Bloom's Level of Cognitive Task		CLA-1	Mid-1	CLA-2	Mid-2	Exam (40%)
		(15%)	(15%)	(15%)	(15%)	
		Th	Th	Th	Th	Th
Level 1	Remember	60%	50%	60%	50%	40%
	Understand					
Loval 2	Apply	40%	50%	40%	50%	60%
Level 2	Analyze					
Loval 2	Evaluate					
Level 5	Create					
Total		100%	100%	100%	100%	100%

Course Designers

a. Dr. Ramesh Vaddi, Associate Professor, Dept of ECE, SRM University - AP

SEMESTER II

Entrepreneurial Mindset

Course Code	SEC 103	Course Category	SEC	L-T-P-C	1	0	1	2
Pre-Requisite		Co-Requisite		Progressive	_	-	1	1
Course(s)		Course(s)		Course(s)				
Course Offering	Managamant	Professional /						
Department	Management	Licensing Standards		-				
Board of Studies		Academic Council						
Approval Date		Approval Date						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To develop the Entrepreneurial Mindset of Students **Objective 2:** To provide students an overview of different aspects of starting a business

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Recall the key entrepreneurship concepts and entrepreneurial traits	1	90%	80%
Outcome 2	Identify entrepreneurial opportunities	2	80%	80%
Outcome 3	Apply entrepreneurial skills to analyze different entrepreneurial ventures.	3	70%	70%
Outcome 4	Apply entrepreneurial concepts to and develop a business model canvas	3	60%	60%

Course Articulation Matrix (CLO) to (PLO)

3 = High, 2 = Medium, 1 = Low

C	, <i>'</i>	/												
					Progr	am Lear	ning Ou	atcome	s (PLO)					
CLO s	Manag ement Knowl edge	Anal ytical Reas onin g and Probl em Solvi ng	Criti cal and Refle ctive Thin king	Strat egic Thin king and Logic al Reas onin g	Mo der n Too ls and ICT Usa ge	Enviro nment and Sustai nabilit y	Moral, Multic ultural and Ethical Aware ness	Indiv idual and Team work Skills	Commu nication Skills	Lead ershi p Readi ness Skills	Self- Dire cted and Lifel ong Lear ning	P S O 1	P S O 2	P S O 3

Outc ome 1	3			2		2	2	2		
Outc ome 2	1	3	3	3		3		3		
Outc ome 3	2	3	3	3		3	2	3		
Outc ome 4	3	3	3	3		3	3	3		
Cou rse Ave rage	2	3	3	3		3	2	3		

Course Unitization Plan - Theory

Unit	Unit Name	Required	CLOs	References
NO.		Contact Hours	Addressed	Used
Unit 1	Introduction	2	1,3	
1.	What is Entrepreneurship			
2.	Challenges Faced by Entrepreneurs			
3.	Why not entrepreneurship			
4.	Who is an Entrepreneurs			
	(Characteristics and Myths)			
5.	Why become entrepreneurs			
6.	Entrepreneurial Traits			
7.	Significance of entrepreneurship in the			
	economy			
8.	Types of Entrepreneurial Ventures			
Unit 2	Entrepreneurial Orientation	4	1,2,4	
9.	Characteristics of successful			
	entrepreneurs			
10.	Mindset shifts: from an employee to an			
	entrepreneur			
11.	Overcoming challenges and dealing			
	with failures			
Unit 3	Entrepreneurial Skills	4	1,2,3,4	
12.	Innovation & Creativity			
13.	Design Thinking			
14.	Strategic Thinking			
15.	Developing a Growth Mindset			
Unit 4	Technopreneurship	2	1,2	
16.	Overview of Technopreneurship			
17.	Characteristics of a Technopreneur			
18.	Technology Trends and Disruption			
19.	Real-world Technopreneurship			
	Examples			

Unit 5	Entrepreneurial Opportunity &	4	2	
20	Difference between idea and			
20.	opportunity			
21	Opportunities in Vibrant Indian			
21.	Entrepreneurial Ecosystem			
22	Opportunity Recognition (Sources of			
	Opportunity)			
23.	Assessing Opportunity			
24.	Opportunities and Uncertainty			
25.	Idea Generation & Market Research			
26.	Idea Selection			
Unit 6	Business Model Canvas & Pitching	2	1,4	
27.	Why BMC			
28.	Value Proposition			
29.	Customer Discovery			
30.	Customer Relationship			
31.	Channels			
32.	Key Partners			
33.	Key Activities			
34.	Key Resources			
35.	Revenue Structure			
36.	Cost Structure			
37.	From Pitch to Hitch (Pitch Deck)			
Unit 7	Startup Financing	2	1,4	
38.	Stages of Fund Raising			
39.	Startup Valuation			
40.	Mode of Investment			
41.	Shareholder's Agreement			
42.	Financial Analysis			
Total C	ontact Hours		20	

Recommended Resources

- 1. Larry Keeley Brian Quinn Ryan Pikkel. Ten types of innovation -the discipline of building breakthroughs, John Wiley& Sons, Inc; 2013
- 2. Eric Ries. The lean startup how constant innovation creates radically successful businesses, Penguin Books
- 3. Bruce R. Barringer, R. Duane Ireland. Entrepreneurship Successfully Launching New Ventures, Pearson; 2020
- 4. Robert D. Hasrich, Dean A. Shepherd, Michael P. Peters, Entrepreneurship, McGraw Hill, 2020
- 5. Siva Prasad N. Design Thinking : Techniques And Approaches, Ane Books, New Delhi; 2023

Other Resources

Coursera:

https://www.coursera.org/specializations/innovation-creativity-entrepreneurship https://www.coursera.org/specializations/wharton-entrepreneurship

Learning Assessment (Theory)

Ploom's Lor	Bloom's Level of Cognitive Task		Continuous Learning Assessments (100%)						
bioom s Lev			CLA-2 (30%)	CLA-3 (40%)					
Level 1	Remember	100%	40%						
	Understand	100 %	40 /0						
T 10	Apply		(0%)	100%					
Level 2	Analyse		00 /0						
Larral 2	Evaluate								
Level 3	Create								
Total		100%	100%	100%					

Course Designers

- a. Mr Aftab Alam, Assistant Professor, Paari School of Business, SRM University-AP
- b. **Mr Udayan Bakshi**, Associate Director, Entrepreneurship and Innovation, SRM University-AP
- c. Prof. Bharadhwaj S, Dean, Paari School of Business, SRM University-AP

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	VLS 505	Course Category	Core Course (CC)	L-T-P-C	3	0	1	4			
	ENG 211			Progressive							
Pre-Requisite Course(s)	211	Co-Requisite Course(s)		Course(s)							
	ECE			course(s)							
	320										
Course Offering	ECE	Professional / Licensing									
Department	ECE	Standards									
Board of Studies Approval		Academic Council Approval									
Date		Date									
Date		Academic Council Approval Date									

VLSI TESTING AND VERIFICATION

PURPOSE: To provide necessary knowledge and skills to ensure the successful design, manufacturing, and deployment of highly reliable and efficient integrated circuits in modern electronic devices

COURSE OBJECTIVES / COURSE LEARNING RATIONALES (CLRS):

Objective 1 (To ensure Quality and Reliability): As VLSI circuits become more complex and denser, the likelihood of defects and errors increases. Testing and verification techniques are employed to ensure that the fabricated chips meet the desired specifications and are free from manufacturing defects. This is crucial to ensure the overall quality and reliability of the integrated circuits used in various electronic devices.

Objective 2 (To detect and Fix Design Errors): During the design phase of VLSI circuits, errors and bugs can be introduced inadvertently. Proper testing and verification processes help identify these design errors early in the development cycle. This allows designers to correct the mistakes before the chips are manufactured; thus, saving time and costs associated with rework.

Objective 3 (Functional Verification): VLSI circuits are designed to perform specific functions. This subject is focused on verifying that these functions are correctly implemented and that the chip behaves as intended under various operating conditions.

Objective 4 (Performance Analysis): VLSI Testing and Verification also involve assessing the performance of the integrated circuits. This includes verifying that the chips meet the required speed, power, and area constraints specified during the design phase.

Objective 5 (To know about the Test Methodologies and Techniques): This subject will also cover various test methodologies and techniques used to evaluate the performance and functionality of VLSI circuits. This includes design for testability (DFT), built-in self-test (BIST), automatic test pattern generation (ATPG), and scan-based testing, among others.

Objective 6 (Fault Models and Test Coverage): Understanding and dealing with different fault models are essential for designing effective tests to identify potential defects in VLSI circuits. This subject will cover various fault models and techniques to achieve high test coverage.

Objective 7 (**Manufacturability and Yield Enhancement**): Testing and verification are critical for assessing the manufacturability of VLSI circuits and improving yield during the chip fabrication process. A higher yield means fewer defective chips, leading to cost savings and better overall productivity.

				Andhra Pradest
	At the end of the course, the learner will	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Have a solid understanding of testing methodologies, verification techniques, and design-for-testability principles	2	80%	70%
Outcome 2	Acquire confidence to work on real-world projects, use industry-standard tools, and simulate various testing scenarios	3	80%	70%
Outcome 3	Gain insights into the current trends and challenges in VLSI Testing and Verification, such as dealing with increased complexity, power constraints, and manufacturing defects	4	75%	65%
Outcome 4	Be able to explore career opportunities in the semiconductor industry, particularly in roles related to design verification, validation, and test engineering	4	70%	60%

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

		Program Learning Outcomes (PLO)											
CLOs	Enginee ring Knowle dge	Design / Develop ment of Solutions Conduct Investiga tions of Complex Problem S	Conduct Investiga tions of Complex Problem S	Mod ern Tool Usag e	The Engin eer and Socie ty	Environ ment and Sustaina bility	Ethi cs	Indivi dual and Team Work	Communic ation	Life- long Learn ing	PS O 1	PS O 2	PS O 3
Outco me 1	2	2	2	3	2	2	1	3	3	3	2	3	2
Outco me 2	3	3	2	3	2	2	1	2	2	3	2	3	2
Outco me 3	3	3	2	3	2	2	1	3	2	3	2	3	2
Outco me 4	3	2	2	2	2	2	1	3	2	3	2	3	3
Cours e Avera ge	3	3	2	2	2	2	1	3	2	3	2	3	2

Course Unitization Plan

Unit No.	Description of Topic	Required Contact Hours	CLOs addressed	References Used		
Unit 1	INTRODUCTION TO VLSI TESTING	7				
1.	VLSI design flow					
2.	Overview of Verification and Testing	1	1, 3			
3.	Need of pre-silicon verification			1.2		
4.	Need of post-silicon validation and debug			1, 2		
5.	VLSI Testing needs and challenges					
6.	Possible Outcome of Testing	1				
7.	Stages of IC Product					
8.	Types of Testing: Implicit, Explicit					

9.	Production Test	1				
10.	Characterization Test	1				
11.	Reliability Test	1				
12.	Test Quality Measures	1				
13.	Yield and defects	T				
14.	Scope of testing and verification in VLSI design process	1				
15.	Issues in test and verification of complex chips	Ĩ				
Unit 2	FAULT MODELING AND FAULT SIMULATION	12				
16.	Overview of Defect, Fault, Error, Failure					
17.	Random and Systematic defects					
18.	Overview of Test pattern, Test Set, Test Length, Fault Coverage	1				
19.	Importance of Fault modeling					
20.	Introduction to Fault models					
21.	Single stuck-at-fault model	1				
22.	Fanout stem and branch for Stuck-at-fault model					
23.	Multiple stuck at fault	1				
24.	Bridging faults	Ţ				
25.	Bridging fault models: Wired-OR, Wired-AND, A- Dominant	2	1.3	3. 4. 7. 8		
26.	Feedback bridging faults		_, 0			
27.	Fanout Stem and Branch for Bridge Fault	2				
28.	Permanent and Transient Bridge Fault					
29.	Delay fault and its detection					
30.	Delay fault models Introduction	2				
31.	Path delay fault: Falling transition, Rising transition					
32.	Transition delay fault: Slow-to-rise (STR) and slow-to-fall (STF)	1				
33.	Overview of Transistor level or Switch level fault model					
34.	Stuck-open fault	1				
35.	Stuck-short fault					
36.	Fault Simulation Overview	1				
37.	Yield and Fault Equivalence	Ĩ				
Unit 3	TESTABILITY MEASURES AND ANALYSIS	6				
38.	Introduction and need of testability measures					
39.	Testability Components: Controllability and Observability	1				
40.	Overview of Testability Analysis					
41.	Topology-based Analysis		1, 3, 4	2, 7		
42.	SCOAP: Combinational Controllability and Combinational Observability	2				
43.	Probability-based Analysis					
44.	COP: Combinational Controllability and Combinational Observability	2				
45.	High-level Analysis	1				
Unit 4	ATPG AND DESIGN FOR TESTABILITY METHODS	14	1, 2, 3	5, 6, 7, 8, 9		

				Andhra Pradesh
46.	Test pattern generation Overview: Random and Deterministic			
47.	Automatic test pattern generation: Complete and Incomplete ATPG	1		
48.	Combinational ATPG Introduction			
49.	Boolean Difference Method	2		
50.	SAT	1		
51.	Path-sensitization Method			
52.	Single Path Sensitization	2		
53.	Multiple Path Sensitization			
54.	D Algorithm	1		
55.	PODEM	1		
56.	FAN	1		
57.	Sequential ATPG Introduction			
58.	Scan design			
59.	Issues in Scan Design	3		
60.	Test interface and boundary scan			
61.	Iddq testing			
62.	Delay fault testing	2		
63.	Built-in Self-Test	2		
Unit 5	VLSI DESIGN VERIFICATION	6		
64.	Design verification techniques: Introduction	1		
65.	Techniques based on simulation approach	1		
66.	Techniques based on analytical approach	1	3, 4	7, 8, 10
67.	Techniques based on formal approach	1		
68.	Functional verification			
69.	Timing verification	3		
70.	Formal verification			
	Total Contact	Hours: 45		

	TEXTBOOKS/REFERENCE BOOKS
1	L.T. Wang, C.W. Wu, and X. Wen, "VLSI Test Principles and Architectures", Morgan Kaufmann, 2006
2	M.L. Bushnell and V.D. Agrawal, "Essentials of electronic testing," Kluwer Academic Publishers, 2000
3	George W. Zobrist, VLSI Fault Modeling and Testing Techniques (VLSI Design Automation Series), Praeger Publishers Inc, 1993
4	RL Wadsack, "Fault modeling and logic simulation of CMOS and MOS integrated circuits" Bell System Technology, 1978
5	Hideo Fujiwara, Logic testing and design for testability, MIT Press, 1985
6	M. Abramovici, M. A. Breuer and A.D. Friedman, "Digital systems testing and testable design," IEEE Press, 1994
7	P. K. Lala, "Digital Circuits Testing and Testability", Academic Press
8	Stephan Eggersgluss and Rolf Drechsler, High Quality Test Pattern Generation and Boolean Satisfiability, Springer, 2012
9	P.H. Bardell, W.H. McAnney, and J. Savior, "Built-in Test for VLSI: Pseudorandom Techniques," Wiely Interscience, 1987
10	Khosrow Golshan, Physical Design Essentials: An ASIC Design Implementation Perspective, Springer, 2007

Learning Assessment

Г

	Bloom's Level of Cognitive Task		nuous Learning	(60%)	End Semester Exam (40%)		
Bloom's Lev	er of Cognitive Task	CLA-1 (15%)	Mid-1 (15%)	CLA-2 (10%)	CLA-3 (20%)		
	Remember	65%	50%	45%	60%	50%	
Lever 1	Understand						
1	Apply	35%	50%	55%	40%	50%	
Level 2	Analyse						
1	Evaluate						
Levers	Create						
Total		100%	100%	100%	100%	100%	

Course Designer: Dr. Swagata Samanta, Assistant Professor, Department of Electronics & Communication Engineering, SRM University – AP

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Semiconductor Device Modelling

Course Code	VLS 506	Course Category	Speciality Stream Courses (CC)	L-T-P-C	3014
Pre-Requisite Course(s)	Solid State Device Physics	Co-Requisite Course(s)		Progressive Course(s)	
Course Offering Department	ECE	Professional / Licensing Standards			
Board of Studies Approval Date		Academic Council Approval Date			

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Learn the basics of current flow though solid state semiconductor devices.

Objective 2: Understand some elementary concepts of quantum- and statistical-mechanics.

Objective 3: Gain knowledge of electrostatics of P-N junction diodes.

Objective 4: Learn the design of Bipolar transistors.

Objective 5: Understand the design of MOSFETs

Objective 6: Apply theoretical knowledge of performance of BJTs and MOSFETs using ABACUS simulation tool.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Identify current flow though semiconductor devices	2	70%	65%
Outcome 2	Identify concepts of quantum- and statistical-mechanics	2	70%	65%
Outcome 3	Discuss electrostatics of P-N junction diodes	3	70%	65%
Outcome 4	Discuss BJT and MOSFET design	3	70%	65%
Outcome 5	Illustrate the applications of MOSFETs design	3	70%	65%
Outcome 6	Demonstrate BJTs and MOSFETs design using ABACUS	3	70%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

]	Progra	ım Lea	rning Out	come	es (PLO)	1				
CLOs	Engineer ing Knowled ge	Design / Developm ent of Solutions Conduct Investigati ons of Complex Problems	Conduct Investigati ons of Complex Problems	Mode rn Tool Usag e	The Engin eer and Societ y	Environm ent and Sustainabi lity	Ethi cs	Individ ual and Team Work	Communica tion	Life- long Learni ng	PS O 1	PS O 2	PS O 3

												Andni	ra Pradesh
Outco me 1	1	2	1	3	2	3	2	2	2	3	3	2	2
Outco me 2	1	2	2	3	2	1	2	2	3	3	2	3	2
Outco me 3	1	2	2	3	2	1	2	2	3	2	3	3	2
Outco me 4	1	2	2	3	2	3	3	3	3	3	3	3	3
Outco me 5	2	3	2	3									
Outco me 6	2	2	2	3									
Cours e Avera ge	2	2	1	3	2	2	2	2	3	3	3	3	2

Course Unitization Plan- Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit I	Basic Semiconductor Properties & Elements of Quantum Mechanics	9		
1.	General Material Properties	2	1	1,3
2.	Crystal Structure, The Unit Cell Concept	1	1	1,3
3.	Simple 3-D Unit Cells	1	2	1,3
4.	Bravais Lattices and Crystal Systems	1	3	1,3
5.	Specific Semiconductor Lattices	1	2	1,3
6.	Miller Indices, Example Use of Miller Indices	1	2	1,3
7.	The Quantum Concept	1	2	1,3
8.	Basic Formalism, Simple Problem Solutions	1	2	1,3
Unit II	Energy Band Theory & Equilibrium Carrier Statistics	9		
9.	Preliminary Considerations, Approximate One- Dimensional Analysis	2	1	1,4
10.	Extrapolation of Concepts to Three Dimensions	2	1	1,4
11.	Density of States, Fermi Function	1	2	1,4
12.	Equilibrium Distribution of Carriers	1	3	1,4
13.	The Energy Band Diagram, Donors	1	2	1,4
14.	Acceptors, Band Gap Centers	1	2	1,4

15.	Equilibrium Concentration Relationships,	1	2	1,4
	Concentration and E _F Calculations.	1	2	
Unit	Recombination-Generation Processes & Carrier	0		
III	Transport	9		
16.	Introduction	1	2	2,3
17.	Recombination-Generation Statistics	2	2	2,3
18.	Surface Recombination-Generation	2	2	2,3
19.	Supplemental R-G Information	1	2	2,3
20.	Drift	1	2	2,3
21.	Diffusion	1	2	2,3
22.	Equations of State	1	2	2,3
Unit	Electrostatics of P-N Junction Diodes &	0		
IV	Introduction to Bipolar Transistors	9		
23.	P-N Diode I-V Characteristics	1	3	2,4
24.	Non-ideal Effects	1	3	2,4
25.	AC Response	1	3	2,4
26.	Large Signal Response	1	4	2,4
27.	Schottky Diode I	1	4	2,4
28.	Schottky Diode II	1	3	2,4
29.	BJT Design I	1	4,5,6	2,4
30.	BJT Design II	1	4,5,6	2,4
31.	Heterojunction Bipolar Transistors	1	4,5,6	2,4
Unit V	MOS	9		
32.	MOS Electrostatics	2	4	2,4
33.	MOSCAP Frequency Response	1	4	2,4
34.	MOSFET I-V Characteristics	2	4	2,4
35.	Nonideal Effects in MOSFET	2	4	2,4
36.	Modern MOSFET	1	3	2,4
37.	Reliability of MOSFET	1	3	2,4
	Total Contact Hours		45	

Course Unitization Lab Plan - Tutorials

Session No.	Description of Experiments	Required Contact Hours	CLOs Addressed	References Used
1.	Interactive visualization of different Bravais lattices, and crystal planes, and materials (diamond, Si, InAs, GaAs, graphene, buckyball).	2	2	4,5
2.	Study of Band Models / Band Structure	2	3	4,5
3.	Carrier Distributions: demonstrates electron and hole density distributions based on the Fermi-Dirac and Maxwell Boltzmann equations	2	3,5,6	4
4.	Understand the basic concepts of DRIFT and DIFFUSION of carriers inside bulk semiconductors	2	3,5,6	4
5.	Simulate semiconductor process modeling	2	3,5,6	4
6.	Basic concept of PN Junction devices	2	3	4,5
7.	Study of Solar Cells	2	3	5

8.	Simulate npn and pnp Bipolar Junction Transistors (BJTs)	2	4	4,5
9.	Analysis of MOS Capacitors	2	4	4
10.	Implement MOSFET / Many-Acronym-Device-FET (mad-FETs)	4	4	4,5
	Total Contact Hours		22	

Recommended Resources

- 1. Advanced Semiconductor Fundamentals, Second Edition, by Robert F. Pierret, Pearson Education, Inc. (1983).
- 2. Semiconductor Device Fundamentals, Robert F.Perret, (1996).
- 3. Sze, S. M., & Ng, K. K. (2006). Physics of semiconductor devices. John wiley& sons.
- 4. B. G. Streetman, S. K. Banerjee, Solid State Electronic Devices, Pearson, (2016)
- 5. Arora, N. (2007). MOSFET modeling for VLSI simulation: theory and practice. World Scientific.

Learning Assessment

Bloom's Level of Cognitive Task		Continuous Learning Assessments (50%)					End Semester Exam			
		Theory (30%)					(50	(50%)		
		CLA-1 (5%)	Mid-1 (10%)	CLA- 2 (5%)	Mid-2 (10%)	Practical (20%)	Th	Prac		
Loval 1	Remember	60%	40%	60%	40%	50%	30%	40%		
	Understand					5070	3070	40%		
Loval 2	Apply	4004	60%	4004	60%	50%	70%	60%		
Level 2	Analyse	40%	00%	40%	00%			00%		
Laval 2	Evaluate									
Create										
	Total	100%	100%	100%	100%	100%	100%	100%		

Course Designers

a. Dr. M. Durga Prakash, Assistant Professor, Department of ECE, SRM University – AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Advanced HDL based FPGA Design

Pre-Requisite Course(s)		Co-Requisite Course(s)	Digital system design	Progressive Course(s)	
Course Offering		Professional /			
Department	ECE	Licensing Standards			
Board of Studies		Academic Council			
Approval Date		Approval Date			

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To study and understand the basic principles and concepts of electronic components, devices, and circuitry, specifically related to semiconducting P-N junction.

Objective 2: To understand and analyze the characteristics of P-N junction diodes and their applications in designing various electronic devices and circuits

Objective 3: To understand, analyze, and design the Bipolar-Junction (BJT) and Field-Effect transistors (FET) based electronic circuits followed by advanced Operational amplifier (Op-Amp) based circuits.

Objective 4: To apply the knowledge gained in the course to real-world applications and work on practical projects to reinforce theoretical concepts.

Bloom's Expected Expected At the end of the course, the learner will be Level Proficiency Attainment able to Percentage Percentage Define and understand the basic principles of Outcome electronic components related to semiconducting 2 80% 1 85% PN junction and other diodes. Outcome Understand, analyze and design the BJT & FET 3 80% 75% based electronic circuits 2 Outcome Understand the properties of operational amplifiers, and their applications in designing and 3 3 80% 75% analyzing the various circuit operations (summing, integration, differentiation, filtering, etc). Outcome Apply the knowledge gained in the course to real-4 75% 70% 4 world applications and work on practical projects

Course Outcomes / Course Learning Outcomes (CLOs)

					Pr	ogram i	Learnin	g Outc	omes (PLO)					
CL	Engin eering Know ledge	Pro ble m Ana	Design and Devel opmen	Anal ysis, Desi gn	Mo der n Too	Societ y and Multic ultural	Enviro nment and Sustai	Mora l, and Ethic al	Indiv idual and Team	Commu nication Skills	Projec t Mana gemen	Self - Dire cted	P S	P S	P S
0		lysis	t	and Rese arch	l and ICT Usa ge	Skills	nabilit y	Awar eness	work Skills		t and Financ e	and Life long Lear ning	0 1	0 2	O 3
Out															
com e 1	2	3	1	2	2				1	2	1	3	2	2	2
Out com e 2	2	3	2	3	2				2	2		3	2	3	3
Out com e 3	3	3	2	3	2				2	2		3	2	3	3
Out com e 4	2	2	2	2	2				3	3	2	3	3	3	3
Cou rse Ave rage	2	3	2	3	2				2	2	1	3	2	3	3

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References
Unit 1	Introduction of VHDL & Logic synthesis	9		
1.	Concepts of Hardware Description Languages	2	1	1,2
2.	VHDL objects, types, subtypes, operators, packages	2	1	1,2
3.	Design cycle synthesis,	1	1	1, 2
4.	Types of synthesizers, design optimization techniques	2	1	1, 2
5.	Technology mapping, design organization	2	1	1, 2
Unit 2	Combinational Logic & Sequential logic design	11		
6.	Design units, entities and architectures	2	2,4	1,2
7.	Simulation and synthesis model, signals and ports	1	2,4	1,2,3
8.	Simple signal assignments, conditional signal assignments, selected signal assignment	2	2,4	1,2,3
9.	Processes, variables, sequential statements	1	2,4	1,2,3
10.	Registers: Simulation and synthesis model of register, register templates, clock types, gated registers, resettable registers,	2	2,4	1,2,3

11.	Simulation model of asynchronous reset,	2	2,4	1,2,3
	asynchronous reset templates, registered variables			
12.	FSM: Moore and Mealy machine modelling	1	2,4	1,2,5
Unit 3	Hierarchy & Sub programs	8	2,4	1,2,5
13.	Components, component instances, component declaration, generate statements	2	2,4	1,2,5
14.	Configuration specifications, default binding, binding process, component packages.	2	2,4	1,2,5
15.	Sub programs functions, procedures	2	2,4	1,2,5
16.	Declaring subprograms.	2	2,4	1,2,5
Unit 4	Test Benches & Verilog	9		
- 17	Test henches, verifying responses	2	3.4	125
17.	Printing response values reading data files	2	3,4	1,2,5
10.	Overview of Digital Design with Varilog HDI	1	3,4	1,2,5
20	Basic Concepts Modules and Ports Basics of	1	3,4	1,2,5
20.	Gate-Level Modeling	2	5,4	1,2,5
21.	Dataflow Modeling, Behavioral Modeling.	2	3,4	1,2,5
Unit 5	FPGA	8		
22.	Introduction, Logic Block Architecture, Routing Architecture, Programmable, Interconnection,	2	1,4	1,2,5
23.	Design Flow, Xilinx Virtex-II, Artix-7 (Architecture)	2	1,4	1,2,5
24.	Boundary Scan, Programming FPGA's	2	1,4	1,2,5
25.	Interface of FPGA board with input and output devices	2	1,4	1,2,5
	Total		45	

Recommended Resources

1. Charles H. Roth, Digital System Design Using VHDL, Jr., Thomson, (2008)2nd Ed.

2. Bhaskar, J., A VHDL Primer, Pearson Education/ Prentice Hall (2006)3rd Ed.

Other Resources

- 3. Ashenden, P., The Designer's Guide To VHDL, Elsevier (2008) 3rd Ed.
- 4. David C. Black and Jack Donovan, SystemC: From the Ground Up, Springer, (2014) 2nd Ed.
- 5. Rushton, A., VHDL for Logic Synthesis, Wiley (1998) 2ed.
- 6. Samir Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, Prentice Hall PTR (2003) 2nd Ed.

Bloom's Level of Cognitive Task		Continu	ious Learnir	ts (50%)	End Semester		
		CLA-1 (5%)	Mid-1 (20%)	CLA-2 (15%)	CLA-3 (10%)	Exam (50%)	
Lovol 1	Remember	50%	50%	40%	40%	5004	
Level 1	Understand	30%		4070	+070	30%	
Laval 2	Apply	450/	400/	400/	400/	400/	
Level 2	Analyse	45%	40%	40%	40%	40%	
Loval 2	Evaluate	50/	100/	2004	2004	100/	
Level 5	Create	3%	10%	20% 20%		10%	
	Total	100%	100%	100%	100%	100%	

Learning Assessment

Course Designer(s)

a. Dr. M. Durga Prakash. Asst. Professor. Dept. Of ECE. SRM University – AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

	Pr	oject management						
Course Code	VLS 508	Course Category	Core Course (CC)	L-T-P-C	0	2	1	3
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	Mechanical Engineering	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand the fundamentals of production and operations management.

Objective 2: To learn about capacity planning, plant layout, scheduling and sequencing

Objective 3: To learn about operation management, work study, time study

Objective 4: To understand about Inventory control, supply chain management

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course students will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Define and explain the basic concepts and principles of production and operations management (POM),	1	80%	75%
Outcome 2	Develop proficiency in capacity planning, plant layout etc.	2	70%	75%
Outcome 3	Able to perform work study, time study, gantt chart	3	80%	70%
Outcome 4	Explain supply chain management functions and applicaions	2	80%	75%

			Progra	ım Lear	ning Ou	tcon	nes (PL	0)							
CLOs	Engineering	Problem Analysis	Design and	Analysis, Design and	Modern Tool and ICT	Society and	Environment and	Moral, and Ethical	Individual and	Communication Skills	Project Management	Self-Directed and Life	PSO 1	PSO 2	PSO 3
Outcom e 1	3	3	1	3	2				3			3	3	2	3
Outcom e 2	3	3	2	3	2				3			3	3	2	3
Outcom e 3	3	3	2	3	2				3			3	3	2	3
Outcom e 4	3	3	3	3	2				3			3	3	3	3
Course Average	3	3	2	3	2				3			3	3	2	3

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
	UNIT-I Fundamental concepts	8	1	1
1.	Production planning and control	2	1	1
2.	New product development			
		1	1	1,2
	UNIT-II Plant layout	8		
3.	Capacity planning, facility planning	2	1	1
4.	Plant location and layout			
		2	1,2	1,2
5.	Scheduling and sequencing	2	1,2	1,2
	UNIT- III Operation management	9		
6.	CPM	3	3	1
7.	Gantt chart	3	3	2
8.	Work study, time study	3	3	1,2
	UNIT-IV- Material management	10		
9.	ABC analysis, EOQ			
		3	3,4	1

10.	Supply chain management	4	3,4	1
11.	Preventive maintenence	3	3,4	2
	UNIT – V Tools	10		
12.	Six sigma, Poka yoke, BPR, ERP, Kanban, ISO 9000,	5	3,4	2
13.	JIT, TQM, FMS, Push/Pull, Kaizen, CAD CAM	5	3,4	2
Te	otal Contact hours	45		

Recom	imended Resources
1.	Production and Operations Management by Bhattacharyya, Universal Press
2.	Production and Operations Management by Panneer selvam R; Publisher: Prentice Hall of India

Learning Assessment

		Continuous	s Learning Ass	essments (50%)		End Semester
Bloom's Level of Cognitive Task		CLA-1 (20%)	CLA-1 (15%)	Midterm-1 (15%)		Exam (50%)
		Th.	Th.	Th.	Th.	Th.
Level 1	Remember	50%	40%	50%	45%	30%
	Understand	5070	10/0	5070	т.) / U	5070
Level 2	Apply	50%	60%	50%	55%	70%
	Analyse	5070	0.070	5070	5.570	/0/0
Laval 3	Evaluate					
	Create					
Tota	al	100%	100%	100%		100%

Course Designers

Prof. Prakash Jadhav, Professor, Department of Mechanical Engineering, SRM university AP.

SEMESTER III

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		Thesis I						
Course Code	VI S 500	Course	Project	ΙΤΡΟ	0	Δ	14	1/
Course Coue	V LS 307	Category	TOJECI	L-1-1-C	U	U	14	14
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)		Course(s)				
Course Offering	Electronics and	Professional /						
Department	Communication	Licensing						
	Engineering	Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Survey the existing research works/literature and analyze them.

Objective 2: Demonstrate the skills acquired to solve a technical problem.

Objective 3: To have a systematic approach to solve the given problem.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be	Bloom's	Expected	Expected
	able to	Level	Proficiency	Attainment
			Percentage	Percentage
Outcome 1	Review and analyze the existing research work	3	80%	70%
	systematically.			
Outcome 2	Attain strong technical, and domain knowledge	3	80%	70%
	in the field of project.			
Outcome 3	Formulate the complex problem and have a	2	80%	70%
	systematic approach for the solution.			
Outcome 4	Conduct research project	2	80%	70%
Outcome 5	Communicate the technical problems with	2	75%	70%
	peers and mentors to move towards appropriate			
	solutions.			

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

				Pı	rogran	n Lea	rning	Outco	mes (PI	L O)			
CLOs	Engineering Knowledge	Conduct Investigations of Complex Problems	Design and Development	Modern Tools Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork Skills	Communication Skills	Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	2					2	2	2	1	1	3
Outcome 2	3	3	3	1			1	2	1	2	1	1	3

Average													
Course	2	3	2	1	1	1	1	2	2	2	1	1	3
Outcome 5	2	3	2		1	1	1	2	3	3	1	1	3
Outcome 4	2	3	2	1	1	1	1	2	2	3	1	1	3
Outcome 3	2	3	2		1	1	1	2	1	2	1	1	3

Course Unitization Plan

The student is expected to spend a minimum of 12 hours/week on the Project work.

Learning Assessment

Bloom's Level of Cognitive		Continu	uous Learni	End Semester Exam (50%)					
	Task	Rev	iew -I	Mid Revi	ew	Final Rev	Final Review		
		Th	Prac	Th	Prac	Th	Prac		
Loval 1	Remember		20%		20%		20%		
Level I	Understand		2070		2070		2070		
Loval 2	Apply		800%		80%		80%		
	Analyse		0070		8070		8070		
Loval 2	Evaluate								
Level 5	Create								
Total			100%		100%		100%		

Course Designers

Dr. Dutgaprakash M, Department of Electronics and Communication Engineering, SRM University - AP

SEMESTER IV

Thesis II

Course Code	VLS 511	Course Category	Project	L-T-P-C	0	0	15	15
Pre-Requisite	Pre-Requisite			Progressive				
Course(s)		Course(s)		Course(s)				
Course Offering	Electronics and	Professional /						
Department	Communication	Licensing						
	Engineering	Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Survey the existing research works/literature and analyse them.

Objective 2: Demonstrate the skills acquired to solve a technical problem.

Objective 3: To have systematic approach to solve the given problem.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency	Expected Attainment
			Percentage	Percentage
Outcome 1	Review and analyse the existing research work	3	80%	70%
	in a systematic way.			
Outcome 2	Attain strong technical, domain knowledge in	3	80%	70%
	the field of project.			
Outcome 3	Formulate the complex problem and to have	2	80%	70%
	systematic approach for the solution.			
Outcome 4	Conduct research project	2	80%	70%
Outcome 5	Communicate the technical problems with	2	75%	70%
	peers and mentors to move towards appropriate			
	solution.			

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

			/	0			0		()				
				Pr	ogra	m Lear	ning	Outcon	nes (PL	0)			
CLOs	Engineering Knowledge	Conduct Investigations of Complex Problems	Design and Development	Modern Tools Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork Skills	Communication Skills	Life Long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	2					2	2	2	1	1	3
Outcome 2	3	3	3	1			1	2	1	2	1	1	3
Outcome 3	2	3	2		1	1	1	2	1	2	1	1	3

												UNIV	ERSITY AP
Outcome 4	2	3	2	1	1	1	1	2	2	3	1	1	3
Outcome 5	2	3	2		1	1	1	2	3	3	1	1	3
Course	2	3	2	1	1	1	1	2	2	2	1	1	3
Average													

Course Unitization Plan

The student is expected to spend at least 32 hours/week on the Project work.

Learning Assessment

Bloom's Level of Cognitive Task		Continu	ious Learnii	End Semester Exam (50%)				
		Rev	iew -I	Mid Revi	ew	Final Review		
		Th	Prac	Th	Prac	Th	Prac	
Lovel 1	Remember		20%		20%		20%	
	Understand		2070		2070		2070	
Loval 2	Apply		80%		80%		80%	
	Analyse		8070		8070		8070	
Loval 2	Evaluate							
Level 5	Create							
	Total		100%		100%		100%	

Course Designers

Dr. Durga Prakash M, Department of Electronics and Communication Engineering, SRM University - AP

ELECTIVES

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		0	*					
Course Code	VLS562	Course Category	Specialty Stream Courses (C)	L-T-P-C	3	0	0	3
Pre-Requisite		Co-Requisite	Nji	Progressive				
Course(s)	VLS513	Course(s)	111	Course(s)				
Course Offering	ECE	Professional /						
Department	ECE	Licensing Standards						
Board of Studies		Academic Council						
Approval Date		Approval Date						

Sensor Technology and MEMS

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand MEMS and microfabrication

Objective 2: To study the essential material properties.

Objective 3: To study various sensing and transduction technique.

Objective 4: To know various fabrication and machining process of MEMS

Objective 5: To know about the polymer and optical MEMS.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Be familiar with the important concepts applicable to MEMS and their fabrication	2	70%	65%
Outcome 2	Discuss the design, analysis and testing of MEMS required material properties	2	70%	65%
Outcome 3	Discuss the various sensing and transduction techniques	3	70%	65%
Outcome 4	Discuss various fabrication and machining process of MEMS	3	70%	65%
Outcome 5	Illustrate the applications of the polymer and optical MEMS devices	4	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

				Prog	ram Le	earning O	utcon	nes (PLO	O)				
CL Os	Engin eering Knowl edge	Design / Develo pment of Solutio ns Conduc t Investi gations of Comple x Proble ms	Conduc t Investi gations of Comple x Proble ms	Mo dern Too 1 Usa ge	The Engi neer and Soci ety	Enviro nment and Sustain ability	Eth ics	Indiv idual and Team Work	Commu nication	Life- long Lear ning	P S O 1	P S O 2	P S O 3
Outc ome 1	1	2	1	3	2	3	2	2	2	3	3	2	2
Outc ome 2	1	2	2	3	2	1	2	2	3	3	2	3	2
Outc ome 3	1	2	2	3	2	1	2	2	3	2	3	3	2
Outc ome 4	1	2	2	3	2	3	3	3	3	3	3	3	3
Outc ome 5	2	3	2	3									
Outc ome 6	2	2	2	3									
Cou rse Ave rage	2	2	1	3	2	2	2	2	3	3	3	3	2

Course Unitization Plan- Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
Unit I	Introduction to Microfabrication	10		
1.	Review of Photolithography	2	1	1,3
1.	Thin Film Deposition, Thermal Oxidation of Silicon	2	1	1,3
1.	Wet Etching, Silicon Anisotropic Etching, Plasma Etching and Reactive Ion Etching	2	2	1,3

1.	Doping	1	3	1,3
1.	Wafer Dicing, Wafer Bonding	1	2	1,3
1.	Packaging and Integration	1	2	1,3
1.	Surface Micromachining	1	2	1,3
Unit II	Electrical and Mechanical Concepts	10		
1.	Conductivity of Semiconductor	1	1	1,2
1.	Crystal Planes and Orientations	2	1	1,2
1.	Stress and Strain	1	2	1,2
1.	Flexural Beam Bending Analysis Under Simple Loading Conditions	2	3	1,2
1.	Intrinsic Stress, Dynamic System	2	2	1,2
1.	Resonant Frequency, and Quality Factor	2	2	1,2
Unit III	Electrostatic and Thermal Sensing and Actuation	8		
16.	Parallel-Plate Capacitor, Applications of Parallel-Plate Capacitors (Inertia Sensor, Pressure Sensor, Flow Sensor, Tactile Sensor, Parallel-Plate Actuators)	2	2	2,3
17.	Interdigitated Finger Capacitors, Applications of Comb- Drive Device (Inertia Sensors, Actuators)	2	2	2,3
18.	Thermal Sensors and Actuators, Fundamentals of Thermal Transfer, Sensors and Actuators Based on Thermal Expansion	2	2	2,3
19.	Thermocouple and Thermal resistors, Applications (Inertia Sensors, Flow sensors, Infrared sensors)	2	2	2,3
Unit IV	Piezoresistive Sensors and Piezoelectric Sensing and Actuation	9		
23.	Expression of Piezoresistivity, Piezoresistive Sensor Material (Single Crystal Silicon, Polycrystalline Silicon)	2	3	1,2
24.	Stress Analysis of Mechanical Elements, Applications of Piezoresistive Sensors (Inertia Sensor, Pressure Sensor, Flow Sensor, Tactile Sensor);	4	3	1,2
25.	Mathematical Description of Piezoelectric Effects, Properties of Piezoelectric Materials, Applications (Inertia Sensor, Acoustic, Flow Sensor, Tactile Sensor).	4	3	1,2
Unit V	Polymer MEMS, Microfluidics and Case Studies	8		
32.	Polymers in MEMS, Applications of polymers	2	4	2,3
33.	Fluid Mechanics Concepts, Microfluidic channels and valves	2	4	2,3
34.	Case studies (Capacitive accelerometer, Piezoelectric Gyroscope)	2	4	2,3
35.	Case studies (DNA amplification, Microbridge gas sensor)	2	4	2,3
	Total Contact Hours		45	
Reco	ommended Resources			

- 1. S.M.Sze, "VLSI Technology", McGraw Hill, 2nd Edition. 2008
- Chang Liu, "Foundations of MEMS" Prentice Hall, 2012
 3.S D Senturia, "MICROSYSTEM DESIGN", Kluwer Academic Publishers, 2002.

Learning As	sessment					
		Contin	uous Lea (5	rning As 50%)	sessments	End Semester Exam (50%)
Bloom's I	Level of Cognitive		Theory			
Task		CLA-1 (5%)	Mid-1 (10%)	CLA- 2 (5%)	Mid-2 (10%)	Th
Loval 1	Remember	600/	400/	600/	400/	200/
Level I	Understand	00%	40%	00%	40%	30%
Loval 2	Apply	4004	60%	4004	60%	7094
Level 2	Analyse	40%	00%	40%	00%	70%
Loval 2	Evaluate					
Level 5	Create					
	Total	100%	100%	100%	100%	100%

Course Designers

a. Dr. M. Durga Prakash, Assistant Professor, Department of ECE, SRM University – AP

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

CAD for VLSI

Course Code	TE-1	Course Category	CE	L-T-P-C	3003
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)	
Course Offering		Professional			
Department	ECE	/ Licensing Standards	IEE	E, Microsoft, Cadence, Viv	vado

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To study the various CAD tools and methodologies employed in the design of VLSI circuits.

Objective 2: To understand the RTL (Register-Transfer Level) design, logic synthesis, physical design, and simulation.

Objective 3: To learn design and testing of VLSI circuits using CAD tools.

Objective 4: To evaluate and enhance the performance of VLSI designs through CAD tools.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Learn industry-standard CAD tools, navigating schematic capture, layout design, and verification tools for VLSI circuits.	2	80%	70%
Outcome 2	Apply theoretical concepts into practical applications.	3	70%	60%
Outcome 3	Analyse, identify bottlenecks, optimize VLSI designs for Performance, Power, and Area (PPA) using CAD tools.	4	80%	70%
Outcome 4	Exhibit adaptability to evolving CAD technologies, ensuring they stay current with advancements in the dynamic field of VLSI design.	4	70%	60%

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

Program Learning Outcomes (PLO)

CL Os	Engi neeri ng Kno wled ge	Pro ble m An aly sis	Desig n and Devel opme nt	Ana lysi s, Des ign and Res earc h	Mo der n To ol an d IC T Us age	Socie ty and Multi cultur al Skills	Envir onme nt and Sustai nabili ty	Mor al, and Ethi cal Awa rene ss	Indi vidu al and Tea mw ork Skill s	Comm unicati on Skills	Proje ct Mana geme nt and Finan ce	Self - Dir ecte d and Lif e Lon g Lea rnin g	P S O 1	P S O 2	P S O 3
Out co me 1	3	2	1	2					2		1			1	2
Out co me 2	3	3	2	2					3				1	3	2
Out co me 3	3	3	3	3					2				1	3	3
Out co me 4	3	3	3	3					3		3		1	3	3
Co urs e Ave rag e	3	3	3	3					3		1		1	3	3

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References
Unit 1	Introduction to VLSI Design and CAD Tools	9		

			Allulira Frauesh
Understand the stages of the VLSI design process, from conceptualization to fabrication.	1	1	1,2
Trace the historical development of VLSI technology and its impact on computing.	1	1	1,2
Examine key milestones and breakthroughs that shaped the VLSI landscape.	1	1	1,2
Analyze the pivotal role of Computer-Aided Design (CAD) tools in VLSI design.	1	1,2	1,2
Discuss how CAD tools enhance efficiency, accuracy, and productivity in VLSI workflows.	1	1,2	1,2
Explore Electronic Design Automation (EDA) tools and their roles in the design flow.	1	1,2	1,2

	Discuss the impact of CAD tools on reducing time-to-market and overall design cost.						
	Introduce students to a basic CAD tool interface.	1	1,2	1,2,4,6			
	Conduct introductory exercises to familiarize students with basic CAD operations.	1	1,2	1,2,4,6			
Unit 2	Digital Design Fundamentals	9					
	Apply Boolean algebra to simplify and manipulate logical expressions.	1	2,3	1,2			
	Design and analyze combinational circuits using logic gates.	1	2,3	1,2			
	Introduce sequential circuits, including flip-flops and latches.	1	1,2,3	1,2			
	Discuss the concept of clocking and its importance in sequential circuit design.	1	1,2,3	1,2			
	Define Register-Transfer Level (RTL) design and its role in VLSI.	1	1,2,3	1,2			
	Demonstrate the translation of high-level design concepts into RTL descriptions.	1	1,2,3	1,2			
	Engage students in practical RTL design exercises.	1	2,3	1,2			
	Implement simple digital circuits using RTL design principles.	1	2,3	1,2			
	Utilize simulation tools to validate the functionality of RTL designs.	1	2,3	1,2			
Unit 3	Schematic Capture and Simulation Tools	9					

	Introduce functional simulation using Verilog or VHDL.	1	2,3,4	1,2,3			
	Create and simulate basic digital circuits to understand functional behavior.	1	2,3,4	1,2,3			
	Optimize circuit designs for better performance using timing constraints	1	2,3,4	1,2,3			
	Apply simulation tools to analyze and troubleshoot real-world digital circuits.	1	2,3,4	1,2,3			
	Discuss the significance of simulation in identifying design flaws.	1	2,3,4	1,2,3			
	Introduce advanced simulation techniques such as mixed-signal simulation.	1	2,3	1,2,3			
	Explore co-simulation of analog and digital components.	1	2,3,4	1,2,3			
	Conduct hands-on sessions for students to create and simulate circuits using schematic capture tools.						
	Emphasize the practical application of simulation results in design refinement.	1	2,3	1,2,3			
Unit 4	Logic Synthesis and Optimization Techniques	9					
	Define logic synthesis and its role in transforming RTL descriptions into gate-level netlists.	1	2,3,4	1,2,5			
	Discuss strategies for optimizing designs in terms of area, power, and performance (PPA).	1	2,3,4	1,2,5			
	Introduce technology mapping as a critical step in the synthesis process.	1	2,3,4	1,2,5			
	Cover advanced logic synthesis techniques, including retiming and resynthesis.	1	2,3,4	1,2,5			
	Explore the impact of these techniques on design quality and efficiency.	1	2,3,4	1,2,5			
	Demonstrate the application of logic synthesis techniques through practical examples.	1	2,3,4	1,2,5			
	Guide students in optimizing designs for specific criteria.	1	2,3,4	1,2,5			
	Discuss current challenges in logic synthesis.	1	2,3,4	1,2,5			
	Explore emerging trends and future directions in logic synthesis research and development.	1	2,3,4	1,2,5			
Unit 5	Physical Design and Layout	9					
	Provide an overview of the physical design process, from initial floor planning to tape- out.	1	3,4,5	1,2,5			
	Introduce floor planning as a critical step in physical design.	1	2,3,4	1,2,5			
	Explain the global and detailed routing stages in the physical design flow.	1	2,3,4	1,2,5			
	Discuss algorithms and techniques for efficient and effective routing.	1	3,4,5	1,2,5			
	Cover the significance of physical verification in ensuring design correctness.	1	2,3,4	1,2,5			
	Introduce Design Rule Checking (DRC) and its role in identifying layout violations.	1	2,3,4	1,2,5			
	Conduct hands-on sessions for students to implement physical design principles.						

Total	45
Discuss advanced topics such as clock tree synthesis and power planning.	12,3,41,2,5
Guide students through the process of floorplanning, placement, and routing.	12,3,41,2,5

Learning Assessment (Integrated course)

Bloom's l	oval of	Continuo	us Learning	End Semester		
Cognitive	e Task	CLA-1 (10%)	CLA-1Mid-1CI(10%)(15%)(10)		Mid-2 (15%)	— Exam (50%)
Level 1	Remember	80%	50%	20%	20%	20%
Level I	Understand	0070	5070	2070		2070
Level 2	Apply	20%	50%	80%	80%	80%
Level 2	Analyse	2070	5070	0070	0070	0070
Level 3	Evaluate					
Level 5	Create					
Total		100%	100%	100%	100%	100%

Course Designer(s)

Dr. Pradyut Kumar Sanki, Associate Professor, Dept. of ECE, SRM University – AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

More Than Moore's Electronics

Course Code	VLS 580	Course Category	Departmental Core Elective	L-T-P-C	3	0	0	3

Pre-Requisite Course(s)	VLSI Technology	Co-Requisite Course(s)		Progressive Course(s)			
Course Offering Department	ECE	Professional / Licensing Standards	IEEE, Microsoft, Cadence				

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To explore the limitations and challenges associated with traditional Moore's Law scaling and delve into alternative approaches for improving electronic devices.

Objective 2: To study and analyze emerging technologies that contribute to electronic advancements, such as 3D integration, heterogeneous integration, and new materials.

Objective 3: To gain proficiency in designing electronic systems with an emphasis on energy efficiency, thermal management, and overall system efficiency by taking into account power optimization.

Objective 4: Recognize the interdisciplinary nature of More than Moore's Electronics by exploring contributions from fields such as materials science, physics, and engineering.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand the limitations and challenges associated with traditional Moore's Law scaling and delve into alternative approaches for improving electronic devices	3	80%	75%
Outcome 2	Understand and analyze the emerging technologies that contribute to electronic advancements, such as 3D integration, heterogeneous integration, and new materials	4	85%	80%
Outcome 3	Design electronic systems with an emphasis on energy efficiency, thermal management, and overall system efficiency	6	80%	75%
Outcome 4	Understand the interdisciplinary nature of More than Moore's Electronics and strongly motivated towards integration of materials science, physics, and engineering research into designing future 3D-IC systems.	5	85%	75%

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)

Program Learning Outcomes (PLO)

CL Os	Engin eering Knowl edge	Design / Develo pment of Solutio ns Conduc t Investi gations of Comple x Proble ms	Conduc t Investi gations of Comple x Proble ms	Mo dern Too l Usa ge	The Engi neer and Soci ety	Enviro nment and Sustain ability	Eth	Indiv idual and Team Work	Commu nication	Life- long Lear ning	P S O 1	P S O 2	P S O 3
Outc ome 1	2	3	2	2	2	2	2	3	3	3	3	2	1
Outc ome 2	3	3	2	2	2	1	2	2	2	3	3	3	2
Outc ome 3	3	3	2	3	2	1	2	3	2	3	3	3	3
Outc ome 4	3	2	2	2	2	3	2	3	2	3	3	3	3
Cou rse Aver age	3	3	2	2	2	2	2	3	2	3	3	3	2

Course Unitization Plan

Unit No.	Unit Name	Required Contact Hours	CLOs Addressed	References Used
UNIT I	Introduction to 3D-IC technology	14		
	Introduction to Moore's Law and MOSFET Technology	2	1	1,2,3
	Scaling Theory	2	1	1,2,3

				Andhra Pradesh
	Evolution of MOSFET	5	1	1,2,3
	Requirements to go beyond Moore's Law	2	1	1,2,3
	Transistor scaling & Research roadmap	2	1	1,2,3
-	CMOS feature directions	1	1	1,2,3
Unit II	3D-Interconnects	6		
	Classification and advantages of 3-D Integration	1	2,4	1,2,3
	Interconnects scaling theory and performance evolution,	2	2,4	1,2,3
	3D Interconnects	1	2,4	1,2,3
	On-chip device (vs) Interconnected device	1	2,4	1,2,3
	3D device (vs) Multicore device.	1	2,4	1,2,3
Unit III	3D-Bonding	16	2,4	
	Interconnect Technology & Classification of Interconnects	1	2,4	1,2,3
	Blanket and Non-Blanket bonding	2	2,4	1,2,3
	Direct bonding and Thermo-Compression bonding	3	2,4	1,2,3
	Passivated and Un-passivated bonding	2	2,4	1,2,3
	Metallic, Dielectric and Hybrid bonding	2	2,4	1,2,3
	Bond quality characterization techniques	2	2,4	1,2,3
	Grand challenges in bonding technology	1	2,4	1,2,3
	Wafer orientation strategies in 3D stacks	2	2,4	1,2,3
	Daisy Chain	1	2,4	1,2,3
UNIT IV	Through-Silicon-Via (TSV)	6		
	TSV Classification and Fabrication methods	1	3,4	1,2,3
	TSV Integration strategies	1	3,4	1,2,3
	TSV Cooling strategies	1	3,4	1,2,3
	TSV Electrical & Thermal modelling	2	3,4	1,2,3
	TSV Testing	1	3,4	1,2,3
UNIT V	Other Si Electronics			

				, unum a i taucsa
		7		
	Spintronics, Spin FET	2	4	4
	Magnetic Tunnel Junction, Spin Transistors	2	4	4
	Organic Electronics, Organic Light Emitting Diodes (OLED), Organic Thin Film Transistors (OTFT)	2	4	4
	Organic Photovoltaic Cells (OPC)	1	4	4
Total Contact Hours		49		

Recommended Resources

- 1. Handbook Of 3D Integration: Volumes 1 And 2: Technology And Applications Of 3D Integrated Circuits by Gorrou, John Wiley.
- 2. 3D IC Integration and Packaging by John H. Lau.
- 3. Silicon VLSI Technology: Fundamentals, Practice and Modelling by James D. Plummer, Michael D. Deal, Peter B. Griffin.
- 4. Organic Electronics: Materials, Processing, Devices and Applications by Franky So.

Other Resources

1. Weste, N.H.E., Harris, D. and Banerjee, A., CMOS VLSI Design, Dorling Kindersley (2006) 3rd ed..

Learning Assessment (Theory)

Bloom's Level of Cognitive Task		Continuous Learning Assessments (60%)				End Semester
		CLA-1 (15%)	Mid-1 (15%)	CLA-2 (15%)	CLA-3 (15%)	- Exam (40%)
Level 1	Remember	er 50%	45%	30%	50%	40%
Lever	Understand					
Level 2	Apply	40%	50%	50%	40%	50%
	Analyse					

Level 3	Evaluate	10%	5%	20%	10%	10%
	Create					
Total		100%	100%	100%	100%	100%

Course Designer(s)

a. **Dr. Patta Supraja**. Asst. Professor. Dept. Of ECE. SRM University – AP

With reference to Dr. Shiv Govind Singh, Professor, Dept. Of EE. IIT Hyderabad.

VLSI Physical Design

			0					
Course Code	VLS 481	Course Category	Technical Elective	L-T-P-C	3	0	0	3
Pre-Requisite	VLSI	Co-Requisite		Progressive				
Course(s)	Design	Course(s)		Course(s)				
Course Offering	ECE	Professional /						
Department		Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand the requirements of VLSI automation Tools.

Objective 2: To understand the requirements Proper placement and Routing of Circuits.

Objective 3: To familiarize with methods and algorithms for efficient Floor Planning and Routing

Objective 4: To understand different circuit level techniques for logic synthesis.

Objective 5: To understand how high-level synthesis is carried out for proper allocation, scheduling and assignment.

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe various VLSI Automation Tools	2	70%	65%
Outcome 2	Implement ideas on Placement and Partitioning of Circuits	3	70%	65%
Outcome 3	Identify concepts and Algorithms of Floor planning and Routing	3	70%	65%
Outcome 4	Develop circuit level techniques and apply in logic Synthesis	3	70%	65%
Outcome 5	Working on High Level Synthesis of Circuits	4	70%	65%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Pı	ogram	Learnir	ng Out	comes	(PLO)					
CL Os	Engin eering Knowl edge	Prob lem Anal ysis	Design and Develo pment	Anal ysis, Desi gn and Rese arch	Mo der n Too l and ICT Usa ge	Societ y and Multic ultural Skills	Enviro nment and Sustain ability	Mora l, and Ethic al Awar eness	Indivi dual and Team work Skills	Commu nication Skills	Project Manag ement and Financ e	Self- Dire cted and Life Lon g Lear ning	P S O 1	P S O 2	P S O 3
Outc ome 1	3	3	3	2	1		2					3	3	1	2
Outc ome 2	3	3	3	2	2	1	2		3			2	3	2	2
Outc ome 3	3	3	3	2	2		2		3			3	3	2	2
Outc ome 4	3	3	3	3	2	1	2		3			2	3	2	2
Outc ome 5	3	3	3	2	2	1	2		2			2	3	2	2
Cou rse Ave rage	3	3	3	2	2	1	2		3			2	3	2	2

Unit	Unit Name	Required	CLOs	References
No.		Contact Hours	Addressed	Used
Unit 1	VLSI DESIGN AUTOMATION TOOLS	16		

	Algorithms and system design, Structural and logic design	2	1	1
	Transistor level design, Layout design	2	1	1
	Verification methods	1	1	1
	Design management tools	1	1	1
	Layout compaction	2	2	1
	placement and routing, Pin Assignment	2	2	1
	Design rules, symbolic layout, Applications of compaction	2	2	2
	Formulation methods, Algorithms for constrained graph compaction	2	2	2
	Circuit representation, Wire length estimation, Placement algorithms, Partitioning algorithms	2	2	2
Unit 3	FLOOR PLANNING AND ROUTING	10		
	Floor planning concepts	2	3	1,2
	Shape functions and floor planning sizing	2	3	1,2
	Local routing, Area routing	2	3	1,2
	Channel routing	2	3	1,2
	Global routing and its algorithms.	2	3	1,2
Unit 4	SIMULATION AND LOGIC SYNTHESIS	10		
	Gate level and switch level modelling and simulation	1	4	2,3
	Introduction to combinational logic synthesis	1	4	2,3
	STA	2	4	2,3
	ROBDD principles, Implementation, construction and manipulation	2	4	2,3
	Two level logic synthesis.	2	4	3,4
	Timing Closure	2	4	3,4
Unit 5	HIGH-LEVEL SYNTHESIS	11		
	Hardware model for high level synthesis	2	5	3,4
	Internal representation of input algorithms	1	5	3,4

Allocation, assignment, and scheduling	2	5	3,4
Scheduling algorithms, Aspects of assignment	1	5	3,4
High level transformations	1	5	3,4

- 1. S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley ,1998.
- 2. N.A.Sherwani, "Algorithms for VLSI Physical Design Automation", (3/e), Kluwer, 1999..
- 3. S.M. Sait, H. Youssef, "VLSI Physical Design Automation", World scientific, 1999
- 4. <u>cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/innovus-implementation-system-ds.pdf</u>

Learning Assessment

		Contin	Continuous Learning Assessments (60%)								
Bloor Cog	n's Level of nitive Task	CLA-1 (15%)	Mid-1 (15%)	CLA-2 (15%)	Mid-2 (15%)	Exam (40%)					
		Th	Th	Th	Th	Th					
Loval 1	Remember	60%	50%	60%	50%	40%					
Level I	Understand										
Loval 2	Apply	40%	50%	40%	50%	60%					
Level 2	Analyze										
Loval 2	Evaluate										
Create											
	Total	100%	100%	100%	100%	100%					

Course Designers

Dr. Ramesh Vaddi, Associate Professor, Dept of ECE, SRM University - AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal

Guntur District, Mangalagiri, Andhra Pradesh 522240

Advanced CMOS Digital IC Design

Course Code	VLS 482	Course Category	Elective	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	TEC	Progressive Course(s)				
Course Offering Department	ECE	Professional / Licensing Standards			-			

Course Objectives

- 1. To study advanced concepts of CMOS Digital Design. It will be helpful for the students when they work in VLSI industries or R&D's.
- 2. To cover crucial real world system design issues such as signal integrity, power dissipation, interconnect packaging, timing and synchronization.
- 3. To provide unique coverage of the latest design methodologies and tools.
- 4. To learn Low-power design concepts and voltage-frequency scaling.

Course Outcome (COs)

CO's	At the end of the course the learner will be able to	Bloom's	Expected Proficiency	Expected Attainment
		Level	Percentage	Percentage
	To understand the fundamental principles of CMOS	2	750/	
1	logic gates, and basic building blocks.	2	/5%	65%
2	Modelling and estimation of R, C, and L parasitic, effect of technology scaling, sheet resistance, techniques to cope with ohmic drop and capacitive cross talk, estimating RC delay, and inductive effects.	1	75%	65%
3	Several lab team assignments to design actual VLSI subsystems from high-level specifications, culminating in a course project involving the software design of a modest complexity chip.	3	75%	65%
4	Several homework assignments based on core concepts and reinforcing analytical skills learned in class.	3	75%	65%

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

		Program Learning Outcomes (PLO)													
CLOs	Engineering Knowledge	Problem	Design and Development	Analysis, Design and	Modern Tool	Society and Multicultural	Environment and	Moral, and Ethical	Individual and Teamwork	Communicatio n Skills	Project Management	Self-Directed	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	3	3	2	-	-	-	-	-	3	3	2	1	2
Outcome 2	3	3	3	3	2	3	1	-	3	2	3	3	3	3	3
Outcome 3	3	2	1	1	1	-	-	-	1	-	2	3	1	1	1
Outcome 4	3	2	1	2	2	-	-	-	1	-	2	3	1	1	3
Course Average	3	2	3	2	2	3	1	-	3	2	3	3	2	2	3

Unit No.	Syllabus Topics	Required Contact Hours	CLOs Addressed	References Used
	INTRODUCTION, THE WIRE, COPING WITH	9		
	INTERCONNECT			
T 1 :4	Impact of Interconnect Parasitic	2	1,2	1,2
No.	Impact of Resistance,	2	1	1
1	Impact of Capacitance, Crosstalk	2	1,2	1
	Reducing RC-delay	1	1	1
	Dealing with inductance	2	1,2	1,3
	DESIGNING SEQUENTIAL LOGIC CIRCUITS	12		

				, then a random
	Self-Timed Circuit Design, Self-Timed Signaling, Muller-C Element, Two Phase Handshake Protocol, Self-Resetting CMOS, Synchronizer	2	1	1,2,3
Unit	Designing Latch and Edge triggered Register using different approaches, Clock Overlaps, C2MOS Logic, TSPC Logic	2	1,2	2,3
No.	Specialized edge-triggered TSPCR	2	1,2	1
2	Pulse Registers, Pipelining	2	1,2	1,3
	Designing Schmitt Trigger and multi-vibrators,	2	1,2	2,3
	Design Techniques for large Fan in, Sizing combinational circuits for minimum delay,	2	3	1,2
	RATIOED LOGIC	6		
Unit	DCVSL	2	1	1,2,3
NO. 3	Pass transistor Logic	2	1,2	2,3
5	Differential Pass Transistor Logic	2	1,2	1
	ARITHMETIC CIRCUITS	9		
	Adders- Ripple-Carry Adder, Complimentary Static CMOS FullAdder,	1	1,2	3,4
Unit	Mirror Adder, Transmission Gate Full Adder	1	1	4
No.	Carry-Bypass Adder, Carry-Select Adder	2	1	4
4	Logarithmic Look-Ahead Adder, Tree Adders	2	1,2	4
	Multipliers (Array Multiplier, Wallace-Tree Multiplier, Booths Multiplier Algo)	2	1,2	3,4
	Shifters (Barrel Shifter, Logarithmic Shifter).	1	3	3,4
	SEMICONDUCTOR MEMORIES	9		
	Memory Timing, Memory Architecture, Read-Only Memory Cells	1	4	1,5
Unit	MOS OR ROM, MOS NOR ROM, MOS NAND ROM	2	4	2,5
1NO. 5	Dual Data rate Synchronous Dynamic RAM	2	4	5
5	DRAM Timing, Sources of Power Dissipation in Memories, Data Retention in SRAM	2	4	5
	Suppressing Leakage in SRAM, Data Retention in DRAM	2	4	3,5

1. J. Rabaey, A. Chandrakasan and Nikolic, B., Digital Integrated Circuits – A Design perspective, Pearson Education (2007) 2nd ed.

2. John P. Uyemura; "Introduction to VLSI Circuits and Systems", John Wiley & Sons, Inc, 2002.

3. Kang, S. and Leblebici, Y., CMOS Digital Integrated Circuits – Analysis and Design, Tata McGraw Hill

4. Weste, N.H.E. and Eshraghian, K., CMOS VLSI Design: A Circuits and Systems Perspective, eddision Wesley (1998) 2nd ed.

5. Baker, R.J., Lee, H. W. and Boyce, D. E., CMOS Circuit Design, Layout and Simulation, Wiley - IEEE Press (2004) 2nd ed.

Web Resources

1. URL1:- http://nptel.ac.in/courses/117106092/

2. URL2:- http://nptel.ac.in/courses/117106093/

			Conti		End S	omostor					
Bloom's Level of Cognitive Task		CLA-1 (10 %)		CLA-2 (10 %)		CLA-3 (10 %)		Mid Term (30 %)		Exam (40 %)	
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level	Remember	60%		60%		60%		50%		50%	
1	Understand										
Level	Apply	30%		30%		30%		30%		30%	
2	Analyse										
Level	Evaluate	10%		10%		10%		20%		20%	
3	Create										
	Total	100%		100%		100%		100%		100%	

Course Designer(s)

Dr. Pradyut Kumar Sanki, Associate Professor, Dept. Of ECE, SRM University - AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

		CIVIOS REIC DESI	gn					
Course Code	VLS 483	Course Category	CC	L-T-P-C	3	0	0	3
Pre-Requisite Course(s)		Co-Requisite Course(s)	VLSI Analog IC Design	Progressive Course(s)				
Course Offering Department	ECE	Professional / Licensing Standards						

CMOS RFIC Design

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To understand the fundamentals of RFIC design and its applications in wireless communication systems.

Objective 2: To learn CMOS technology basics and its suitability for RF applications.

Objective 3: To gain proficiency in designing and optimizing RF building blocks such as amplifiers, mixers, oscillators, and filters.

Objective 4: To develop skills in simulation and verification of RFIC designs using CAD tools.

Objective 5: To explore advanced topics in RFIC design, including noise analysis, linearity, and power management.

Objective 6: To Apply design methodologies to achieve desired specifications for wireless transceivers.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficienc y Percentag e	Expected Attainment Percentage
Outcome 1	Understand the fundamental of analog IC Design, including the single-stage amplifiers and Differential Amplifiers	1,2	85%	80%
Outcome 2	Design operational amplifiers and performance of various Op-Amp topologies	3	80%	75%
Outcome 3	Create layout designs for operational amplifier circuits and understand the stability in feedback system and noise performance	3	85%	70%
Outcome 4	Apply theoretical knowledge to real-world analog and digital converter IC design projects	3	80%	70%
Outcome 5	Explore emerging trends in RFIC design including mm-wave and high-frequency applications.	3	80%	70%
Outcome 6	Collaborate in teams to solve design challenges and implement solutions in RFIC design projects.	3	80%	70%

Course Articulation Matrix: (CLO) to Program Learning Outcomes (PLO)CLOsProgram Learning Outcomes (PLO)

	Engineering Knowledge	Design / Development of	Conduct Investigations of	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Team Work	Communication	Life-long Learning	PSO 1	PSO 2	PSO 3
Outcome 1	3	2	2	2	2					3	3	2	2
Outcome 2	3	3	3	2	2				-	3	2	3	2
Outcome 3	3	3	3	3	2			2		2	3	3	2
Outcome 4	3	3	3	3	2			3		3	3	3	3
Outcome 5													
Outcome 6													
Course Average	3.00	2.75	2.75	2.50	2.00			1.25		2.75	2.75	2.75	2.25

Course Unitization Plan - Theory

Unit No.	Unit Name	Required Contact	CLOs Addressed	References
		Hours		
Unit 1	Introduction to RFIC Design	10		
	Overview of RF systems and applications	2	1	1,2
	Challenges in RFIC design and performance metrics	2	1	1,2
	CMOS Technology Basics for RFICs	2	1	1,2
	Overview of CMOS process technology	2	1	1,2
	Impact of technology scaling on RF performance	2	1,3	1,2
Unit 2	RFIC Building Blocks and Passive RF Components	9		
	Low Noise Amplifiers (LNAs)	1	1	1,2
	Mixers and frequency synthesizers	2	1	1,2
	Power amplifiers (PAs) and modulators	2	1	1,2
	Inductors, capacitors, and transmission lines in CMOS	2	1	1,2
	Modeling and layout considerations for passive components	2	2,3	1,2
Unit 3	RFIC Design Methodologies, Simulation and Characterization	9		
	Design specifications and trade-offs	1	2	1.2
	Transistor-level design techniques (e.g., cascode, current mirrors)	2	1,2	1,2
	CAD tools for RFIC design (e.g., ADS, Cadence Virtuoso)	3	2	1,2
	Noise analysis, linearity, and stability analysis	3	2	1,2
Unit 4	Advanced RFIC Design, Testing and Validation	9		
	Frequency planning and synthesis	1	1	1,2
	Phase-locked loops (PLLs) and clock generation circuits	2	1,2	1,2
	Nonlinear distortion and intermodulation analysis	2	2	1,2,3
	Test methodologies and measurement techniques	2	2,3	1,2,3
	Yield analysis and reliability considerations	2	3	1,2,3
Unit 5	Case Studies and Applications	8		
	Design examples of RF front-end circuits (e.g., for wireless communication standards)	4	3,4	2,3

	Emerging trends in RFIC design (e.g., IoT, mm-wave applications)	4	3,4	2,3
-	Total		45	

Recommended Texts and References

- 1. Razavi, B., & Behzad, R. (2012). RF microelectronics (Vol. 2, pp. 255-333). New York: Prentice hall.
- 2. Yuan, J. S. (2016). CMOS RF Circuit Design for Reliability and Variability. Springer.
- 3. Research papers and application notes from semiconductor manufacturers

Learning Assessment

Bloor	n's Level of	Cont	60%)	End Semester		
Cogi	nitive Task	CLA-1 (10%)	Mid-1 (15%)	CLA-2 (15%)	CLA-3 (10%)	Exam (50%)
Level	Remember	600/	500/		500/	400/
1	Understand	00%	30%		30%	40%
Level	Apply	400/	500/	600/	200/	400/
2	Analyse	40%	30%	00%	30%	40%
Level Evaluate				400/	2004	200/
3 Create				40%	20%	20%
	Total	100%	100%	100%	100%	100%

Course Designer(s)

Dr. M. Durga Prakash, Associate Professor, Dept. Of ECE. SRM University - AP

SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

SoC Design for IoT

Course Code	VLS 485	Course Category	Professional Core (C)	L-T-P-C	3	0	0	3
Pre-Requisite	Microprocessors and	Co-Requisite		Progressive				
Course(s)	Microcontrollers	Course(s)		Course(s)				
Course	Electronics and	Professional /						
Offering	Communication	Licensing						
Department	Engineering	Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the basics of SoC Design.

Objective 2: Learn the techniques to choose a processor for SoC Implementation.

Objective 3: Learn different type of memory blocks used in SoC Design.

Objective 4: Understand the bus architecture and Custom SoC Design.

Objective 5: Learn the designing methods for customized SoC Design using hardware and software codesign.

	At the end of the course, the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Understand and explain the basics of SoC Design.	2	80%	70%
Outcome 2	Understand the techniques in choosing a best processor for SoC implementation.	3	80%	70%
Outcome 3	Understand the memory blocks used in SoC Design.	2	80%	70%
Outcome 4	Understand various bus architecture in designing Custom SoCs.	3	80%	70%
Outcome 5	Understand various terminologies using hardware and software co-design for designing customized SoC using suitable Processor.	2	80%	70%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO) Program Learning Outcomes (PLO)

				P	rogram .	Learning	g Outco	mes (PI	JO)				
CL Os	Engi neeri ng Kno wled ge	Cond uct Inves tigati ons of Com plex Probl ems	Desi gn and Deve lopm ent	M od er To ol U sa ge	Socie ty and Multi cultu ral Skill s	Envir onme nt and Susta inabil ity	Mor al, and Ethi cal Aw aren ess	Indi vid ual and Tea mw ork Skil Is	Comm unicati on Skills	Lif e Lo ng Le arn ing	P S O 1	P S O 2	P S O 3
Outc ome 1	3	2	2	1				1		1	1	1	1
Outc ome 2	3	3	3	2				1		2	2	2	2
Outc ome 3	3	2	2	1				1		1	2	2	2
Outc ome 4	3	3	2	1				1		2	2	2	2
Outc ome 5	3	2	2	2				1		2	2	2	2
Cou rse Ave rage	3	2	2	1				1		2	2	2	2

Unit	Unit Name	Required	CLOs Addressed	References
INO.		Hours	Addressed	Usea
Unit	SYSTEM ARCHITECTURE: OVERVIEW	0		
1		7		
1	Components of the system, Processor architectures	2	1	1,3
2	Processor architectures, Memory and addressing – system level interconnection.	2	1	1,3,4
3	SoC design requirements and specifications, Design integration – design complexity.	2	1	1,3,4
4	Cycle time, die area and cost, Ideal and practical scaling.	1	1	1,3,4
5	Design integration – design complexity, Area- time-power tradeoff in processor design.	1	1	1,3,4
6	Configurability.	1	1	1,3,4
Unit 2	PROCESSOR SELECTION FOR SOC	9		
7	Overview – soft processors.	1	2	1,3,4
8	Processor core selection.	1	2	1,3,4
9	Basic concepts – instruction set, branches.	1	2	1,3,4
10	Interrupts and exceptions.	1	2	1,3,4
11	Basic elements in instruction handling.	1	2	1,3,4
12	Minimizing pipeline delays	1	2	1,3,4
13	Reducing the cost of branches – Robust processors	1	2	1,3,4
14	Vector processors, VLIW processors	1	2	1,3,4
15	Superscalar processors.	1	2	1,3,4
Unit 3	MEMORY DESIGN	9		
16	SoC external memory, SoC internal memory	1	3	3
17	Scratch pads and cache memory	1	3	3
18	Cache organization and write policies	1	3	2, 3, 4
19	Srategies for line replacement at miss time	1	3	2,3
20	Split I- and D-	1	3	3,4
21	Caches – multilevel caches	1	3	3
22	SoC memory systems	1	3	1,4
23	Board based memory systems	1	3	2
24	Simple processor/memory interaction.	1	3	2
Unit	INTERCONNECT ARCHITECTURES	0		2
4	ANDSOCCUSTOMIZATION	7		2
25	Bus architectures – SoC standard buses.	1	4	2
26	AMBA, Core Connect.	1	4	2,3
27	Processor customization approaches.	1	4	2,3
28	Reconfigurable technologies.	1	4	2
29	Mapping designs onto reconfigurable devices.	1	4	2
30	FPGA based design.	1	4	2
31	Architecture of FPGA.	1	4	2
32	FPGA interconnect technology.	1	4	2,4
33	FPGA memory, Floor plan and routing	1	4	2,3,4

Unit 5		9		
34	Hardware software task partitioning – FPGA fabric Immersed Processors	1	5	1,2
35	Soft Processors and Hard Processors	1	5	2,3,4
36	Tool flow for Hardware/Software Co-design	1	5	2,3
37	Interfacing Processor with memory and peripherals	1	5	2,3
38	Types of On-chip interfaces – Wishbone interface	1	5	2,3
39	Avalon Switch Matrix.	1	5	2,3,4
40	OPB Bus Interface	1	5	2,3
41	Creating a Customized Microcontroller	1	5	1,4
42	FPGA-based Signal Interfacing and Conditioning.	1	5	2,3,4
	Total Contact hours	45		

- 1. Michael J. Flynn and Wayne Luk, "Computer System Design: System-on-Chip", John Wiley and sons,2011.
- 2. Rahul Dubey, "Introduction to Embedded System Design Using Field Programmable Gate Arrays", Springer Verlag London Ltd., 2009.
- **3.** Sudeep Pasricha and Nikil Dutt, On-Chip Communication Architectures System on Chip Interconnect, Elsevier, 2008.
- 4. Steve Furber, System-on-chip Architecture, Addison-Wesley, 2000.

Learning Assessment

			Conti		End Semester						
Bloom's Level of Cognitive Task		CLA-1 (10%)		Mid-1 (20%)		CLA-II (10%)		CLA-III (10%)		Exam	(50%)
C		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac
Level 1	Remember	40%		30%		40%		40%		50%	
	Understand										
Lovel 2	Apply	60%		70%		60%		60%		50%	
Level 2	Analyse										
Lovel 2	Evaluate										
Level 5	Create										
Total		100%		100%		100%		100%		100%	

Course Designers

Dr Saswat Kumar Ram. Assistant Professor, Department of Electronics and Communication Engineering, SRM University - AP

SRM University – AP, Andhra Pradesh Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Course Code	VLS 486	Course Category	Technical Elective	L-T-P-C	2	0	1	3
Pre-Requisite		Co-Requisite		Progressive				
Course(s)		Course(s)						
Course	ECE	Professional /						
Offering		Licensing	VIVADO					
Department		Standards	ds					

FPGA-based Embedded System Design

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: To introduce the internal architecture of programmable logic with focus on FPGA.

Objective 2: To provide knowledge in FPGA design flow at the architectural and system design. **Objective 3:** To impart a good background in block-based design using standard system level tools.

	At the end of the course the learner will be able to	Bloom' s Level	Expected Proficienc y Percentag e	Expected Attainme nt Percentag e
Outcome 1	Ability to understand the structure of the fabric of programmable logic	2	80%	75%
Outcome 2	Implement ideas on Placement and Partitioning of Circuits	3	80%	75%
Outcome 3	Identify concepts and Algorithms of Floor planning and Routing	3	80%	75%
Outcome 4	Develop circuit level techniques and apply in logic Synthesis	3	80%	75%
Outcome 5	Working on High Level Synthesis of Circuits	4	80%	75%

Course Outcomes / Course Learning Outcomes (CLOs)

Course Articulation Matrix (CLO) to Program Learning Outcomes (PLO)

					Prog	gram 1	Learn	ing O	utcon	nes (P	LO)				
CLOs	En gin eer ing Kn ow led ge	Pro ble m An aly sis	De sig n and De vel op me nt	An aly sis, De sig n and Re sea rch	Mo der n To ol and IC T Us age	So ciet y and Mu ltic ult ura 1 Ski lls	En vir on me nt and Sus tai nab ilit y	Mo ral, and Eth ical Aw are nes s	Ind ivi dua l and Te am wo rk Ski lls	Co m mu nic ati on Ski Ils	Pro ject Ma nag em ent and Fin anc e	Sel f- Dir ect ed and Lif e Lo ng Le arn ing	PS O 1	PS O 2	PS O 3
Outcome 1	3	3	3	3	1		2	1				3	3	1	2
Outcome 2	3	3	3	3	2	1	2	1	3			2	3	2	2
Outcome 3	3	3	3	3	2		2	1	3			3	3	2	2
Outcome 4	3	3	3	3	2	1	2	1	3			2	3	2	2
Outcome 5	3	3	3	3	2	1	2	1	2			2	3	2	2
Course Average	3	3	3	3	2	1	2	1	3			2	3	2	2

Unit	Unit Name	Required	CLOs	References
No.		Contact	Addressed	Used
		Hours		
Unit 1	Programmable Logic Devices	10		
	PROM - PAL - PLA - CPLD - Gate Arrays - MPGA	1	1	1
	FPGA - Programming Technologies - EPROM - EEPROM - FLASH - SRAM - FPGA Fabric	2	1	1

	Configurable Logic Block - LUT - Slice - Slicem	1	1	1
	Programmable Interconnects - Input Output Blocks - Keeper Circuit - Xilinx 7 Series Architecture.	2	1	1
	Introduction to Edge Zynq SoC FPGA Development Board. (Lab Experiment - 1)	2	1	4
	Controlling LED in Edge Zynq SoC FPGA Development Board. (Lab Experiment - 2)	2	1	4
Unit 2	FPGA Design Flow and Abstraction Levels	10		
	Verilog Design for Synthesis	1	2	1
	One Hot Encoding - Memory Blocks - Block Memory Generator (BRAM/BROM)	2	2	1
	Single Port Memory - Dual Port Memory	1	2	2
	FIFO - Distributed RAM - Synthesis Pitfalls - Latch Inference	2	2	2
	Designing Combinational Logic circuits Edge Zynq SoC	2	2	5
	FPGA Development Board. (Lab Experiment - 3)			
	Designing Sequential Logic circuits Edge Zynq SoC	2	2	5
	FPGA Development Board. (Lab Experiment - 4)			
Unit 3	Static Timing Analysis	14		
	Speed Performance - Timing Constraints	2	3	2
	Clock Management - Clock Buffers.	3	3	2
	Clock Tree Routing	3	3	2
	Control relay using switch on the Edge Zynq Board. (Lab	2	3	5
	Experiment - 5)			
	Produce sound at piezo Buzzer at regular interval on Edge Zynq Board. (Lab Experiment - 6)	2	3	5
	LDR Interface using ADC. (Lab Experiment - 7)	2	3	5
Unit 4	Introduction to SoC Design	10		
	Hard Macros - Multipliers - DSP Block	2	4	3

	Hard Core Processors - Interface Circuits	2	4	3
	Configuration Chain - JTAG Interface - Zynq7000 Architecture	2	4	3
	2x16 Liquid Crystal Display Interface. (Lab Experiment -	2	4	4
	8)			
	4-bit BCD to Seven Segment Display. (Lab Experiment -	2	4	4
	9)			
Unit 5	Timing Simulation and Programming	10		
	Timing Simulation using Modelsim/Icarusverilog,	2	5	3
	Programming using JTAG, System Level testing and debugging	1	5	3
	Debugging techniques	1	5	3
	Debugging using chip scope and Logic analyzers, Protocols on FPGA	2	5	3
	Seven Segment Display Counter. (Lab Experiment - 10)	2	5	3
	Displays 128x160 pixel image on the SPI TFT Display interfaced to Edge board. (Lab Experiment - 11)	2	5	4
	Project			

- . 1. Amano, Hideharu, Principles and Structures of FPGAs, First Edition, Springer, 2018.
- 2. Readler, Blaine C., Verilog by example: a concise introduction for FPGA design, Full Arc Press, 2011.
- 3. ZainalabedinNavabi, Embedded Core Design with FPGAs, First Edition, McGraw Hill, 2008.
- 4. Xilinx Inc, Vivado Design Suite User Guide, 2021.

Learning Assessment

Bloom's Level of Cognitive Task			Continuous Learning Assessments (50%)									
		CLA-1 (10%)		Mid-1 (15%)		CLA-2 (10%)		CLA3 (15%)		Exam (50%)		
		Th	Prac	Th	Prac	Th	Prac	Th	Prac	Th	Prac	
Level	Remember	60%	30%	50%	40%	60%	30%	50%	40%	50%	50%	
1	Understand											
Level	Apply	40%	50%	50%	50%	40%	60%	50%	50%	40%	40%	
2	Analyze											
	Evaluate		20%		10%		10%		10%	10%	10%	

Level	Create										
3											
Total		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Course Designers Dr. Saswat Kumar Ram, Assistant Professor, Dept of ECE, SRM University - AP