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Notations

e Always over C
® A (pure) Hodge structure of weight r € 7 denoted
(Vz, VP9), consists of:
® A finitely generated free abelian group (lattice) V7,
® a decomposition V¢ = @pyq=r VP9, of the complexification
Ve = Vg ®y C, satisfying VP9 = VpP.a,
® Equivalently we can define a pure Hodge structure on V¢
by giving a filtration

Ve=F°cF'c...F"co0

such that Vg ~ FP @ Fn—p+L,
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® X smooth, projective variety of dimension n. Then
H?P(X,Q) admits the Hodge decomposition.

® For r = 2p, elements of
HPP(X,Z) := H?(X,Z) N HPP(X,C) are called Hodge
classes.

® An algebraic cycle of codimension p is a formal linear
combination of irreducible codimension p subvarieties of X.
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the singular ® X smooth, projective variety of dimension n. Then
o H?P(X,Q) admits the Hodge decomposition.
Inder Kaur ® For r = 2p, elements of

Classial HPP(X,Z) := H?(X,Z) N HPP(X,C) are called Hodge
Hodge classes.

conjecture

® An algebraic cycle of codimension p is a formal linear
combination of irreducible codimension p subvarieties of X.

e 7ZP(X):= free abelian group of codimension p algebraic
cycles of X.

® The cycle class map:

c: ZP(X)®Q — H*(X,Q)
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® One can show: Im(c) C H?P(X,Q) N HPP(X,C) i.e., the
image of the cycle class map are Hodge classes.
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Classical

Hodge ® Precisely: Is the cycle class map

conjecture

c: ZP(X)® Q — H?(X,Q) N HPP(X,C)

surjective?
® True for p = 1: Lefschetz (1,1)!

® very general abelian varieties (Recall, an element is general
if it lies in the complement of finitely many proper closed
subsets; very general if in the complement of countably
many proper closed subsets)
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Examples from moduli spaces

® Given X := very general smooth projective curve,
r,d coprime integers,
L line bundle on X of degree d. We have:

® Jacobian of X satisfies the Hodge conjecture.

® The moduli space of stable rank r, determinant L vector
bundles on X satisfies the Hodge conjecture (rank 2:
Balaji-King-Newstead, rank r: Biswas-Narasimhan).
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conjecture ® Question: For X a singular variety. Is there a formulation

Inder Kaur of the Hodge conjecture?
® There is a homological version by Jannsen (still unproven!).

® Problem : The classical Chow group is not compatible
Question with arbitrary pull-back morphisms.

® Use the Operational Chow group by Fulton and
Macpherson.

® Question: What about the cycle class map?

® One of the many issues: Hodge structure is no longer pure.
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Inder Kaur ¢ A mixed Hodge structure, denoted (V7z, W,, F*®) consists
of a Z module Vy with

an increasing filtration ... Wo C Wy C W5 ... on
Question VQ = Vz ®7 Q,
a decreasing filtration: V¢ = FODO F1DF2. ..
such that F*® defines a (pure) Hodge structure of weight k
on the graded piece Gr/¥ Vo = Wi 1Vo/ Wi Vp.
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where AZ(X) is the compactly supported operational Chow
cohomology



Operational Chow group

phwising ® The operational Chow group AP(X) has several nice
ogica
version of .
the singular propertleS.
Hodge PY

It exists for singular as well as quasi-projective varieties.
Inder Kour e |f X is non-singular, it is the classical Chow group i.e
ZP(X) modulo rational equivalence.
e If X is non-singular, X a compactification of X with
boundary Z := X\ X, we have:

0 — AR(X) — AP(X) — AP(Z),

conjecture

Question

where AZ(X) is the compactly supported operational Chow
cohomology

® |f X is the union of two proper closed subvarieties X; and
X5, we have

0 — AP(X) — AP(X1) @ AP(X2) — AP(X1 N X2)
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Bloch-Gille-Soulé cycle class map

X a singular variety and AP(X) the Operational Chow
group.
Totaro: there is no map

AP(X) ® Q — H*(X,Q)

with good properties.

Bloch-Gillet-Soulé: there is a (functorial) cycle class map
clp : AP(X) ® Q — Gry, H?P(X, Q).

If X is non-singular, this agrees with the usual cycle class
map.
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AP(X) ® Q — H*(X,Q)

with good properties.
Question

¢ Bloch-Gillet-Soulé: there is a (functorial) cycle class map
clp : AP(X) ® Q — Gry, H?P(X, Q).

e |f X is non-singular, this agrees with the usual cycle class
map.

® For X projective, define the algebraic cohomology group
denoted by H3P(X) C Gryp H?P(X, Q). to be the image of
the cycle class map clp.
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Singular Hodge conjecture(SHC) in weight p if the
image of the cycle class map
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neerte ® Suppose singular locus of X, X, is of dimension at most
p—1.
® Then we say that X satisfies the
g Singular Hodge conjecture(SHC) in weight p if the

Hodge image of the cycle class map
e clp equals Hif (X) := Gl H?P(X, Q) N FPH??(X, C).
¢ Singular Hodge conjecture(SHC): The above statement
is true for all p.
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Goal

® For X non-singular, SHC is just the classical Hodge
conjecture.

® Goal: Give a criterion for a singular variety to satisfy the
SHC.

e Strategy(Heuristic):

® Embed the singular variety in a flat family of projective
varieties such that the given variety is the singular fibre.

® Equip the singular fibre with the limit mixed Hodge
structure due to Schmid.

® Ask, if a very general fibre in the family satisfy the Hodge
conjecture, does the central fibre satisfy SHC?
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® |let e: h — A* be the universal covering.
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Limit mixed Hodge structure

A cohomo-
logical
et e Let m: X — A flat family of projective varieties, smooth
o over A* with 771(0) := &y = X.
Inder Kaur ® let e: h — A* be the universal covering.

® Denote by X the pull-back of X to b.
® By Ehresmann’s theorem, given any s € B, there is a
canonical identification between H?P(X..,Z) and
Hodse H?P(Xs, 7).
e ® The Hodge filtration on H?P(X;, C) induces a Hodge
filtration on H?P(X,C), say F?.
® The limit “Hodge" filtration on H?P(Xs, C) is the limit of
F? (twisted by the monodromy action) as the imaginary
part of s tends to cc.
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® Use the specialization morphism to relate the mixed Hodge
structure on the cohomology of the singular fibre
H?P(X,C) to that of a general fibre equipped with the limit
mixed Hodge structure H?P(X,,, C).

® |n general, the specialization morphism is neither surjective
nor injective.
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Use the specialization morphism to relate the mixed Hodge
structure on the cohomology of the singular fibre
H?P(X,C) to that of a general fibre equipped with the limit
mixed Hodge structure H?P(X,,, C).

In general, the specialization morphism is neither surjective
nor injective.

We show that for the algebraic classes, it is surjective and
study the kernel.



A cohomo-
logical
version of
the singular
Hodge
conjecture

Inder Kaur

Singular
Hodge
conjecture

Can

we use the specialization map...

Use the specialization morphism to relate the mixed Hodge
structure on the cohomology of the singular fibre
H?P(X,C) to that of a general fibre equipped with the limit
mixed Hodge structure H?P(X,,, C).

In general, the specialization morphism is neither surjective
nor injective.

We show that for the algebraic classes, it is surjective and
study the kernel.

But this is not enough!
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Hodge structure could be larger than that of the Hodge
lattice of the general fibre.
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the singular fibre from those of the smooth fibre.
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Technical problems: Mumford-Tate families

® Problem: The rank of the Hodge lattice of the limit mixed
Hodge structure could be larger than that of the Hodge
lattice of the general fibre.

® If so, we cannot hope to intercept all the Hodge classes of
the singular fibre from those of the smooth fibre.

® |n other words, we need that the rank of the Hodge lattice
of the limit mixed Hodge structure is equal to the rank of
the Hodge lattice of a general fibre.
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Inder Kaur Hodge structure could be larger than that of the Hodge
lattice of the general fibre.

® If so, we cannot hope to intercept all the Hodge classes of

the singular fibre from those of the smooth fibre.

ainjular ® |n other words, we need that the rank of the Hodge lattice

odge . . . .

conjecture of the limit mixed Hodge structure is equal to the rank of

the Hodge lattice of a general fibre.

® Such a family 7 : X — A will be called a Mumford-Tate
family.
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® Denote by S the Weil restriction of scalars for the field
extension C/R.
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Alternate definition of a Hodge structure

® Denote by S the Weil restriction of scalars for the field
extension C/R.
¢ For a commutative R-algebra A, S(A) = (A ®g C)*

® S is an R-algebraic group.
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conpetiure extension C/R.
Inder Kaur ¢ For a commutative R-algebra A, S(A) = (A ®g C)*
® S is an R-algebraic group.
¢ Definition: A Hodge structure of weight r is given by a
non-constant homomorphism of R-algebraic groups.
¢S — GL(Wr)
Mumford-
s such that over C the eigenspace decomposition of

¢S — GL(V) is:
° V(C — @p+q:r V2L
® ¢$(z)v =zPZ%, v e VPI
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the singular ® The Mumford-Tate group associated to a Hodge structure
conjecmare (V, ) is the smallest Q-algebraic subgroup of GL(V)
Inder Kaur Containing the |mage ¢(S)

® Denote by T™"(V) := V®" @ (Hom(V,Z))*" @z Q.
e Elements of FO(T™"(V)) N T™"(Vg) of weight O are
called Hodge tensors. They inherit a natural Hodge

structure from V.

® When V is equipped with a mixed Hodge structure, these
Tare are weight 0 elements of FO(T™"(V¢)) N Wo T™"(Vg).

families

e Alternate definition of Mumford-Tate group: The
Mumford-Tate group is the biggest subgroup of GL(Vg)
which fixes the Hodge tensors.
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® Let m: X — A be a smooth family over A*.

theHsizgular ° FIX P > 0

odge

conjecture ® For t € A*, denote by M; the Mumford-Tate group
Inder Kaur associated to the pure Hodge structure on H?P(X;, Q).

® Recall, H?P(X;, Q) can also be equipped with limit mixed
Hodge structure (I.m.h.s).

® Denote by M° the Mumford-Tate group associated to the
l.m.h.s on H?P (X, Q).

Momford. e Definition: We call m a Mumford-Tate family if for a
Tate general t € A¥,

families

M, = M

are isomorphic as algebraic subgroups of Aut(H?P(X:, Q)).

e Example Relative Gieseker Moduli space of stable sheaves
of rank 2 and odd degree determinant.
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® Fix integer p such that the dimension of singular locus of X
strictly less than p.

¢ Theorem(Dan, -): Let mp : X — A be a flat, projective
Mumford-Tate family with X = Aj.

Suppose a general fibre over A* satisfies the Hodge
conjecture in weight p. If the Hodge conjecture in weight

p — 1 holds for varieties of dimension n— 1, then X satisfies
the singular Hodge conjecture in weight p.
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Idea

of the proof

By semi-stable reduction, there exists a flat, projective
family 7w : Y — A which has the same fibre over A* as my,
Y is regular and the central fibre is a reduced simple normal
crossings divisor with one of the irreducible components,
say Y being proper birational to X.

Denote by )} the central fibre of 7 and E the union of the
components of ), except for Y i.e.,

Vo=YUE

Since Yiing is of dimension at most p — 1, Hi(\/sing) =0 for
i>2p—1.
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structures:

Inder Kaur

0 — Gry) HZP(U,Q) — Gryp H*P(Yo, Q) — Gry) H*(E, Q).

This gives rise to the exact sequence (of Q-vector spaces):
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logical ® let U be the regular locus of X.
0 guler e Observe that Gr%HfP(U) = Gr%H2P(X)

conjecture

We have the following exact sequence of pure Hodge
structures:

Inder Kaur

0 — Gry) HZP(U,Q) — Gryp H*P(Yo, Q) — Gry) H*(E, Q).

This gives rise to the exact sequence (of Q-vector spaces):

0 = HiR,(X) = Hif, (Vo) = Hif, (E). (1)

feeult and Similarly get an exact sequence (of Q-vector spaces):
esu an
Idea of proof

2 20 2 v
0— HHﬁg(X) — HHZlg(Y) — HH’(’ig(E ny). (2)
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A cohomo-
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t;z’z:;’;u‘gr ® By properties of the operational Chow group:
Hgdge
o 0 — AP(X) — AP())) — AP(E) (3)
0 — AP(X) = AP(Y) = AP(ENY) (4)
® The cycle class map cl, induces a morphism of exact
sequences:
0 AP(X) —— AP(Dh) — A(E)
Result and
Idea of proof
0 Hifag (X) — Hifa, (Vo) — Hify, (E)
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0 H L (X) — HEL(Y) — HE(ENY)
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Inder Kaur
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e Suffices to show: the cycle class map from AP(})) to
2 . . . . 2 2
Hifoe (Do) s surjective ie., Hy"(Yo) = Hify, (D).
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Idea
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and
0 AP(X) — AP(Y) —— AP(ENY)
0 Hifas(X) — (V) — Hif (ENY)
Suffices to show: the cycle class map from AP(})) to

HI2{[()ig(y0) is surjective i.e., H3"(J0) = Hf{'ég(%)-
Since

0 — H (X) = HX (Vo) = Hif, (E). (5)

is an exact sequence of (Q-vector spaces, this implies the
cycle class map from AP(X) to Hﬁ’fjg(X) is surjective.
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Thank you for your attention !
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