

Allied Courses of PHYSICS Non-Engineering Major

DEPARTMENT OF PHYSICS Amaravati 522502, Andhra Pradesh INDIA

CURRICULUM AND SYLLABI

(For students admitted from the academic year 2018)

CURRICULUM

Semester II

Course Category	Course Code	Course Name	L	Т	Р	L+T+ P	С
Core/Allied	PHY 204	Physics A1	3	0	0	3	3
Core/Allied	PHY 204L	Laboratory: Physics- A1	0	0	2	2	1
		TOTAL					

Semester IV

Course Category	Course Code	Course Name	L	Т	Р	L+T+ P	С
Core/Allied	PHY 214	Physics A2	3	0	0	3	3
Core/Allied	PHY 214L	Laboratory: Physics- A2	0	0	2	2	1
		TOTAL					

РНУ 204	Physics A1	L 3	Т 0	P 0	C 3
Co-requisite:	NIL				
Prerequisite:	NIL				
Data Book / Codes/Standards	NIL				
Course Category	CORE				
Course designed by	Department of Physics				
Approval	Academic Council Meeting, 2019 (Regulation - 2018)				

PU	JRPOSE	The course aims to cover the fundamental formalism and application includes basic Newtonian Mechanics, Heat & Thermodynamics, E			•			-
LE	ARNING	OBJECTIVES	STUDENT OUTCOMES					
At	the end of	the course, student will be able to						
1.		e fundamental concepts of mechanics such as force, energy, um etc. more rigorously as needed for further studies in basic						
2.	Students ³ theory	physical intuition and thinking process through understanding the						
3.		mple mechanical systems by correlating it to the real world problems						

Session	Description of Topic	Contact hours	C-D-I-O	IOs	Reference
	UNIT I - Review of Newtonian Mechanics	9			
1.	Review of Scalars, Vectors, Kinematics: Equations of motion for constant acceleration and non-constant acceleration	1	С		1,2,3
2.	Dynamics: Contact forces, Static friction, kinetic friction and worked examples, Free body force diagram; Applications of Newton's law. Worked examples	1	C-D-I		1,2,3
3.	Tension, Pulley systems, worked examples, Solving various pulley systems using free body force diagram and Newton's law	1	C-D		1,2,3

4.	Momentum and Impulse, Impulse momentum theorem, Average force, Worked examples	1	C-D-I	
5.	Conservation of Momentum, Momentum Diagrams, Worked examples	1	C-D	
6.	Center of Mass of point objects and continuous systems e.g., rod, rectangular sheet	1	C-D	
7.	Center of Mass of a Uniform and different objects	1	C-D	
8.	Motion of the Center of Mass; Velocity and Acceleration of the Center of Mass,	1	C-D	
9.	Reduction of a System to a Point Particle, Center of Mass Trajectory, projectile blast problem	1	C-D	
	UNIT II – Work and Energy			
10.	Kinetic Energy and Work in 1D, 2D and 3D; Work by a Constant and a non- Constant Force	1	C-D	1,2,3
11.	Work-Kinetic Energy Theorem and worked examples	1	C-D	1,2,3
12.	Conservative and Non-conservative Forces with examples, Potential Energy due to gravity and Potential Energy of a spring	1	C-D	1,2,3
13.	Principle of energy conservation; worked examples	1	C-D	1,2,3

14.	Collision and its type. Collision in 1D and 2D;	1	C-D		1,2,3
15.	Rigid body, Rotational Motion, moment of inertia	1	C-D		
16.	Moment of inertia of various objects, worked examples, Parallel and perpendicular axis theorem	1	C-D		
17.	Torque and Angular momentum, conservation of angular momentum, worked examples	1	D-I		
18.	Rolling motion, worked examples, Conservation of energy in rotational motion	1	D-I		
	UNIT III – HEAT & HERMODYNAMICS	9			
19.	Basic Thermodynamics – Concept of Temperature	1	С		1,2,3
20.	First and Second Law(s) applicable to Heat Engines and Refrigerators;	1	С		
21.	Thermodynamic Process-Isothermal, Adiabatic, Isobaric, Isochoric, Adiabatic relations of system for perfect gas	1	C-D		
22.	Pressure-Volume and Temperature-Entropy Diagrams for engines	1	C-D		1,2,3
23.	Conversion of Heat into Work and its converse, Carnot's Cycle and Carnot's Heat Engine and its efficiency	1	C-D		1,2,3
24.	Otto cycle, Diesel cycle and its comparison, efficiencies, The Carnot Refrigerator	1	C-D		
25.	Maxwell–Boltzmann Distribution, Equipartition theorem	1	C-D		1,2,3
	1	l	[L	I

				Andh	
26.	Seebeck, Peltier and Thomson effect,	1	С		
27.	Thermoelectric generators and its applications, Thermocouples, Temperature measurement, Thermoelectric materials	1	С		
	UNIT IV: ELECTROSTATICS	9			1,2,3
28.	Coordinate system, Cartesian, Cylindrical and Spherical polar	1	С		
29.	O. Gradient, divergence and curl		С		
30.	Properties of charge and Coulomb's law	1	С		1,2,3
31.	Gauss's law and its applications	1	C-D-I		1,2,3
32.	Electric potential and potential energy, examples	1	D-I		1,2,3
33.	Capacitors, parallel plate, cylindrical and spherical	1	D-I		1,2,3
34.	Introduction to Electric Dipole and dipole Moment	1	С		
35.	Torque and potential energy of a dipole	1	D		1,2,3
36.	Potential and field due to electric dipole	1	С		1,2,3
	UNIT V: MAGNETISM	9			1,2,3
37.	Magnetic force and cyclotron	1	С		1,2,3
38.	Biot-Savart Law for magnetic fields	1	С		1,2,3
39.	Magnetic field due to various current loops	1	C-D		
40.	Motion of a current carrying coil in magnetic field and torque	1	D		
	Ampere's circutal law		С		

42.	Introduction to time-varying fields	1	С		
43.	Faraday's law of induction	1	C-D		
44.	Lenz law and electro-motive force	1	C-D		
45.	Maxwell's equations in free space	1	C-D		
	Total contact hours	45			

	LEARNING RESOURCES							
	TEXT BOOKS/REFERENCE BOOKS/OTHER READING MATERIAL							
1	Physics for Scientist and Engineers, Ninth edition (2017) - Raymond A. Serway, John W. Jewett (Publisher - Cengage India Private Limited))							
2	Introduction to Electrodynamics –David J. Griffiths; 4 th Edition, 2012, PHI Eastern Economy Editions							

Course natu	Course nature							
Assessment Method – Theory Component (Weightage 100%)								
In-semester	Assessment tool	Cycle test I	Cycle test II	Assignment	Class Test	Total		
	Weightage	15%	15%	10%	10%	50%		
End semeste	r examination	Weightage :	•	•		50%		

PHY 204L		Physics A1 LABORATORY				P 2	C 1
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book / Codes/Standards	NIL	L					
Course Category		Allied					
Course designed by	Dep	artment of Physics					
Approval	Aca	Academic Council Meeting, 2019 (Regulation - 2018)					

PU	PURPOSE The course aims to cover the fundamental formalism and applications of Physics. It mainly includes basic Newtonian mechanics, heat & thermodynamics, electricity & magnetism								
LE	ARNING	OBJECTIVES	STU		- •	ΠQ			
			OU	ICC	JMI	ES			
At	the end of	the course, student will be able to							
4.	Understa	nd basic equipment operation and analysis							
5.	Correlate	fundamental concept of physics to laboratory experiments							
6.	Origin an	d analysis of error							

Sl. No	Description of Experiments	Contact hours	C-D-I-O	IOs	Reference
1	Revisions of Vernier caliper and Screw Gauge	1	I-O		1, 2
2	Plotting graphs and Error analysis	1	I-O		1, 2
3	Determine moment of inertia of a flywheel	2	I-O		1, 2
4	Determination of spring constant	1	I-O		1, 2
5	Determination of thermal conductivity of a given material	2	I-O		1, 2
6	Measurement of specific heat capacity of any given material	2	I-O		1, 2
7	To find the dielectric constant of the medium using parallel plate capacitor	2	I-O		1, 2
8	Use Faraday's law for finding the total magnetic flux through the coil	1	I-O		1, 2
9	Verify the Biot-Savart law for a given circular coil	2	I-O		1, 2
	Total contact hours (Including demo and repeat labs)	15			

	LEARNING RESOURCES								
TEXT BOOKS/REFERENCE BOOKS/OTHER READING MATERIAL									
1	Physics for Scientist and Engineers, Ninth edition (2017) - Raymond A. Serway, John W. Jewett (Publisher - Cengage India Private Limited))								
2	Physics laboratory manuals								

Course natu					
Assessment	Method – Prac	tical Compone	nt (Weightage 100	0%)	
In-semester	Assessment tool	Lab performance	Practical model exam	Viva	Total
	Weightage	20%	20%	10%	50%
End semeste	r examination	Weightage :	·	· · · · · ·	50%

PHY 214		Physics A2	L 3	Т 0	P 0	C 3
Co-requisite:	NIL					
Prerequisite:	NIL					
Data Book /	NIL					
Codes/Standards	1,112					
Course Category		CORE				
Course designed by	Dep	artment of Physics				
Approval	Aca	demic Council Meeting, 2019 (Regulation - 2018)				

PU	JRPOSE	The course aims to cover the fundamental formalism and applications of Physics. It mainly includes introduction to modern physics, fundamentals of quantum mechanics, solid state physics and devices											
LE						STUDENT OUTCOMES							
At	the end of	the course, student will be able to											
7.		e fundamental concepts of modern physics and explain phenomenon											
8.	Students' theory	physical intuition and thinking process through understanding the											
9.	Understa	nd basics of solid state physics and functioning of devices											

Session	ession Description of Topic		C-D-I-O	IOs	Reference
	UNIT I - Introduction to Modern Physics	9			
1.	Electromagnetic waves; coupled magnetic and electric oscillations	1	С		1,2,3
2.	Introduction to special theory of relativity	1	С		1,2,3
3.	Inertial and non-inertial frames of reference	1	С		1,2,3
4.	Length contraction and time dilation	1	C-D		1,2,3
5.	Mass energy relation	1	C-D		1,2,3
6.	Quantum states of an electron in an atom, Introduction Atomic Spectra	1	С		1,2,3

				Andhra Pradesh
7.	Early models of H-atoms	1	D	1,2,3
8.	Spectrum of Hydrogen	1	Ι	1,2,3
9.	9. Photoelectric effect and Compton scattering		Ι	1,2,3
	UNIT II – Origin of Quantum Mechanics			
10.	Limitation of classical mechanics	1	С	1,2,3
11.	Review of Black body radiation, examples	1	С	1,2,3
12.	Wave particle duality Matter waves - De Broglie hypothesis, Photoelectric effect	1	C-D	1,2,3
13.	Linear Vector Space, Hilbert Space		C-D	1,2,3
14.	4. Heisenberg's uncertainty principle		C-D	1,2,3
15.	Postulates of quantum mechanics - Schrödinger	1	С	1,2,3
16.	Wave function and its physical interpretation, Position, Momentum operator, angular momentum operator, and total energy operator	1	С	1,2,3
17.	Orthogonality, Orthonormality, Operator Schrödinger time dependent and independent equation	1	C-D	1,2,3
18.	Schrödinger Representation, Heisenberg Representation, Interaction Representation	1	C-D	1,2,3
	UNIT III – Application of Quantum Mechanics	9		
19.	Equation of continuity, and its physical significance	1	С	1,2,3
20.	Bound State, Free particle, Particle in infinitely deep potential well (one - dimension)	1	C_D	1,2,3
21.	Particle in three dimension rigid box	1	C-D	1,2,3

				Andhra Pradesh
22.	Scattering State	1	C-D	1,2,3
23.	Step potential, Potential barrier. (Qualitative discussion),	1	C-D	1,2,3
24.	Angular Momentum	1	C-D	1,2,3
25.	Generalized Angular Momentum	1	C-D	1,2,3
26.	Spin Momentum	1	C-D	1,2,3
27.	Qualitative discussion on the radial and angular parts of the bound state energy	1	D-I	1,2,3
	UNIT IV: Introduction to Solid State Physics	9		
28.	Crystalline and amorphous solids, Lattice, Basis,		С	1,2,3
29.	Translational vectors, Primitive and non- primitive unit cell		С	1,2,3
30.	Symmetry operations, Different types of lattices-2D and 3D (Bravais lattices), Miller indices	1	С	1,2,3
31.	SC, BCC and FCC structures, Packing fraction	1	С	1,2,3
32.	Various types of crystal structures Crystal structures- NaCl, diamond, CsCl, ZnS, HCP	1	С	1,2,3
33.	Concept of reciprocal lattice and its properties	1	С	1,2,3
34.	Ionic, covalent, molecular and metallic binding in crystalline solids	1	D	1,2,3
35.	Bragg's law and Bragg's Diffraction condition in direct and reciprocal lattice,	1	C-D	1,2,3
36.	Ewald's construction, Debye Schrrerer method	1	C-D	1,2,3
	UNIT V: Solid State Devices	9		
37.	Classification of solids based on band theory	1	C-I	1,2,3

38.	Semiconductors - origin of band gap	1	C-I	1,2,3
39.	Intrinsic and extrinsic semiconductors, p and n type, and p -n junction diodes		C-I	1,2,3
40.	Transistors and its characteristics	1	Ι	1,2,3
41.	Different types of transistors and their uses	1	Ι	1,2,3
42.	Examples of various transistors and applications		I-O	1,2,3
43.	Energy storage devices, Supercapacitors, fuel cells.	1	I-O	1,2,3
44.	Photodetectors, transducers and sensors; applications	1	I-O	1,2,3
45.	Solar Cells	1	I-O	1,2,3
	Total contact hours		45	

	LEARNING RESOURCES								
	TEXT BOOKS/REFERENCE BOOKS/OTHER READING MATERIAL								
1	Physics for Scientist and Engineers, Ninth edition (2017) - Raymond A. Serway, John W. Jewett (Publisher - Cengage India Private Limited))								
2	Introduction to Solid State Physics – C Kittel; Eighth Edition, Wiley publishers								
3	Concepts of Modern Physics (2017)- Arthur Besier, Shobhit Mahajan, S. Rai Choudhury (Tata McGraw Hill)								

Course nature					Theory					
Assessment 1	Assessment Method – Theory Component (Weightage 100%)									
In-semester	Assessment tool	Cycle test I	Cycle test II	Assignment	Class Test	Total				
	Weightage	15%	15%	10%	10%	50%				
End semeste	r examination	Weightage :				50%				

PHY 214 L	Physics A2 LABORATORY			L 0	T 0	P 2	C 1
Co-requisite:	NIL						
Prerequisite:	NIL						
Data Book /	NII						
Codes/Standards	INIL	NIL					
Course Category		CORE					
Course designed by	Dep	artment of Physics					
Approval	Academic Council Meeting, 201 (Regulation - 2018)						

PURPOSE	The course aims to cover the fundamental formalism and applications of Physics. It mainly includes basic Newtonian mechanics, heat & thermodynamics, electricity & magnetism						ly
LEARNING OBJECTIVES		STUDENT OUTCOMES					
At the end of	f the course, student will be able to						
10 Unders	and basic equipment operation and analysis						
11 Correlat	e fundamental concept of physics to laboratory experiments						

Sl. No	Description of Experiments	Contact hours	C-D-I-O	IOs	Reference
1	Determine velocity of sound	2	I-O		1, 2
2	Verification of Stefan's Law	1	I-O		1, 2
3	Characteristics of a p-n junction	2	I-O		1, 2
4	Study the various Transistor Biasing configurations and CE Characteristics, load line and Q-factor	2	I-O		1, 2
5	Characteristics of a Solar cell	2	I-O		1, 2
6	Determine charge carrier type and concentration of a given semiconductor using Hall Effect	2	I-O		1, 2
7	Study spectral lines from Neon using a Neon discharge lamp and determine the Rydberg constant using the Bohr model formulation	2	I-O		1, 2
8	Determine lattice parameter of a given crystalline powder using X-ray diffractometer	2	I-O		1, 2
	Total contact hours (Including demo and repeat labs)	15			

	LEARNING RESOURCES						
	TEXT BOOKS/REFERENCE BOOKS/OTHER READING MATERIAL						
1	Physics for Scientist and Engineers, Ninth edition (2017) - Raymond A. Serway, John W. Jewett (Publisher - Cengage India Private Limited))						
2	Physics laboratory manuals						

Course natu	re	Practical	I		
Assessment	Method – Prac	tical Compone	nt (Weightage 100	0%)	
In-semester	Assessment tool	Lab performance	Practical model exam	Viva	Total
	Weightage	20%	20%	10%	50%
End semeste	r examination	Weightage :			50%