SESHADRI CONSTANTS FOR PARABOLIC BUNDLES

Snehajit Misra

Chennai Mathematical Institute

July 23, 2022

This talk is based on a joint work with Indranil Biswas, Krishna Hanumanthu and Nabanita Ray.

Throughout this talk, we consider projective varieties X over $\mathbb C.$

Throughout this talk, we consider projective varieties X over \mathbb{C} . Let L be a line bundle on X and s_0, s_1, \dots, s_N be a \mathbb{C} -basis for $H^0(X, L)$.

Throughout this talk, we consider projective varieties X over \mathbb{C} . Let L be a line bundle on X and s_0, s_1, \dots, s_N be a \mathbb{C} -basis for $H^0(X, L)$. Then we have the rational map

$$\varphi_L: X ---- \to \mathbb{P}^N$$

defined as

$$x \longmapsto [s_0(x):s_1(x):\cdots:s_N(x)].$$

Throughout this talk, we consider projective varieties X over \mathbb{C} . Let L be a line bundle on X and s_0, s_1, \dots, s_N be a \mathbb{C} -basis for $H^0(X, L)$. Then we have the rational map

$$\varphi_I: X ---- \to \mathbb{P}^N$$

defined as

$$x \longmapsto [s_0(x):s_1(x):\cdots:s_N(x)].$$

The map is not defined precisely on base locus

$$Bs(L) := Z(s_0) \cap \cdots \cap Z(s_N).$$

Throughout this talk, we consider projective varieties X over \mathbb{C} . Let L be a line bundle on X and s_0, s_1, \dots, s_N be a \mathbb{C} -basis for $H^0(X, L)$. Then we have the rational map

$$\varphi_I: X ---- \to \mathbb{P}^N$$

defined as

$$x \longmapsto [s_0(x):s_1(x):\cdots:s_N(x)].$$

The map is not defined precisely on base locus

$$Bs(L) := Z(s_0) \cap \cdots \cap Z(s_N).$$

• The line bundle L is called base-point free or globally generated if $Bs(L) = \phi$.

Throughout this talk, we consider projective varieties X over \mathbb{C} . Let L be a line bundle on X and s_0, s_1, \dots, s_N be a \mathbb{C} -basis for $H^0(X, L)$. Then we have the rational map

$$\varphi_I: X ---- \to \mathbb{P}^N$$

defined as

$$x \longmapsto [s_0(x):s_1(x):\cdots:s_N(x)].$$

The map is not defined precisely on base locus

$$Bs(L) := Z(s_0) \cap \cdots \cap Z(s_N).$$

• The line bundle L is called **base-point free** or **globally generated** if $Bs(L) = \phi$. In addition, if φ_L defines a closed embedding $\varphi_L : X \hookrightarrow \mathbb{P}^N$, then L is called **very ample**.

Throughout this talk, we consider projective varieties X over \mathbb{C} . Let L be a line bundle on X and s_0, s_1, \dots, s_N be a \mathbb{C} -basis for $H^0(X, L)$. Then we have the rational map

$$\varphi_L: X ---- \to \mathbb{P}^N$$

defined as

$$x \longmapsto [s_0(x):s_1(x):\cdots:s_N(x)].$$

The map is not defined precisely on base locus

$$Bs(L) := Z(s_0) \cap \cdots \cap Z(s_N).$$

- The line bundle L is called **base-point free** or **globally generated** if $Bs(L) = \phi$. In addition, if φ_L defines a closed embedding $\varphi_L : X \hookrightarrow \mathbb{P}^N$, then L is called **very ample**.
- A line bundle L is called **ample** if some positive integral multiple $L^{\otimes m}$ of it is very ample.

NEF AND AMPLE VECTOR BUNDLES

DEFINITION (NEF LINE BUNDLE)

A line bundle L on a projective variety X is called nef if $L \cdot C = \deg(L|_C) \ge 0$ for every irreducible curve $C \subset X$.

NEF AND AMPLE VECTOR BUNDLES

DEFINITION (NEF LINE BUNDLE)

A line bundle L on a projective variety X is called nef if $L \cdot C = \deg(L|_C) \ge 0$ for every irreducible curve $C \subset X$.

For a vector bundle E on a projective variety X, we consider Grothendieck's projectivization $\mathbb{P}(E) := \text{Proj}(\bigoplus_{i>0} \text{Sym}^i(E))$.

DEFINITION (HARTSHORNE)

A vector bundle E on a projective variety X is called ample (nef) if the tautological line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ is ample (nef) on $\mathbb{P}(E)$.

NEF AND AMPLE VECTOR BUNDLES

DEFINITION (NEF LINE BUNDLE)

A line bundle L on a projective variety X is called nef if $L \cdot C = \deg(L|_C) \ge 0$ for every irreducible curve $C \subset X$.

For a vector bundle E on a projective variety X, we consider Grothendieck's projectivization $\mathbb{P}(E) := \text{Proj}(\bigoplus_{i>0} \text{Sym}^i(E))$.

DEFINITION (HARTSHORNE)

A vector bundle E on a projective variety X is called ample (nef) if the tautological line bundle $\mathcal{O}_{\mathbb{P}(E)}(1)$ is ample (nef) on $\mathbb{P}(E)$.

• An \mathbb{R} -divisor $D = \sum_i a_i D_i \in \mathsf{Div}(X)_{\mathbb{R}} := \mathsf{Div}(X) \otimes \mathbb{R}$ is called numerically trivial, denoted by $D \equiv 0$ if

$$D \cdot C = \sum_{i} a_i (D_i \cdot C) = 0.$$

• An \mathbb{R} -divisor $D = \sum_i a_i D_i \in \mathsf{Div}(X)_{\mathbb{R}} := \mathsf{Div}(X) \otimes \mathbb{R}$ is called numerically trivial, denoted by $D \equiv 0$ if

$$D \cdot C = \sum_{i} a_i (D_i \cdot C) = 0.$$

• The quotient $\text{Div}(X)_{\mathbb{R}}/\equiv$ is called the **real Néron Severi group**, denoted by $N^1(X)_{\mathbb{R}}$.

• An \mathbb{R} -divisor $D = \sum_i a_i D_i \in \mathsf{Div}(X)_{\mathbb{R}} := \mathsf{Div}(X) \otimes \mathbb{R}$ is called numerically trivial, denoted by $D \equiv 0$ if

$$D \cdot C = \sum_{i} a_i (D_i \cdot C) = 0.$$

- The quotient $\text{Div}(X)_{\mathbb{R}}/\equiv$ is called the **real Néron Severi group**, denoted by $N^1(X)_{\mathbb{R}}$.
- An \mathbb{R} -divisor $D = \sum_i a_i D_i \in \mathsf{Div}(X)_{\mathbb{R}} := \mathsf{Div}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ on X is called **nef** if

$$D \cdot C = \sum_{i} a_i (D_i \cdot C) \geq 0$$

for all irreducible curve $C \subseteq X$.

• An \mathbb{R} -divisor $D = \sum_i a_i D_i \in \mathsf{Div}(X)_{\mathbb{R}} := \mathsf{Div}(X) \otimes \mathbb{R}$ is called numerically trivial, denoted by $D \equiv 0$ if

$$D \cdot C = \sum_{i} a_i (D_i \cdot C) = 0.$$

- The quotient $\text{Div}(X)_{\mathbb{R}}/\equiv$ is called the **real Néron Severi group**, denoted by $N^1(X)_{\mathbb{R}}$.
- An \mathbb{R} -divisor $D = \sum_i a_i D_i \in \mathsf{Div}(X)_{\mathbb{R}} := \mathsf{Div}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ on X is called **nef** if

$$D \cdot C = \sum_{i} a_{i}(D_{i} \cdot C) \geq 0$$

for all irreducible curve $C \subseteq X$.

• The intersection product being independent of numerical equivalence class, one can talk about nef classes in $N^1(X)_{\mathbb{R}}$.

Numerical Criterion for Ampleness

Nakai-Moishezon-Kleiman criterion

A line bundle L on a projective variety X is ample if and only if $L^{\dim V} \cdot V > 0$ for every positive-dimensional irreducible closed subvariety $V \subseteq X$ (including the irreducible components of X).

Numerical criterion for ampleness

Nakai-Moishezon-Kleiman criterion

A line bundle L on a projective variety X is ample if and only if $L^{\dim V} \cdot V > 0$ for every positive-dimensional irreducible closed subvariety $V \subseteq X$ (including the irreducible components of X).

Seshadri's criterion

A line bundle L on a projective variety X is ample if and only if there exists a positive number $\epsilon > 0$ such that

$$\frac{(L \cdot C)}{\mathsf{mult}_{\mathsf{x}} C} \ge \epsilon$$

for every point $x \in X$ and every irreducible curve $C \subseteq X$ passing through x. Here $L \cdot C$ is the intersection product of the line bundle L with the curve C.

SESHADRI CONSTANTS FOR LINE BUNDLES

Let X be a complex projective variety, and let L be a nef line bundle on X.

DEFINITION (DEMAILLY)

For a point $x \in X$, the **Seshadri constant** of L at x, denoted by $\varepsilon(X, L, x)$, is defined to be

$$\varepsilon(X, L, x) := \inf_{x \in C} \left\{ \frac{L \cdot C}{\operatorname{mult}_x C} \right\},$$

where the infimum is taken over all irreducible and reduced curves $C \subset X$ passing through x with multiplicity $\text{mult}_x C$.

Alternatively, we can define Seshadri constants as follows. Let

$$\pi: \operatorname{Bl}_X X = \widetilde{X} \longrightarrow X$$

be the blow up of X at x, and let E denote the exceptional divisor.

$$\varepsilon(X, L, x) = \sup \{\lambda \geq 0 \mid \pi^*(L) - \lambda E \text{ is nef}\}.$$

SESHADRI CONSTANTS FOR VECTOR BUNDLES

We consider a nef vector bundle E on a projective variety X and $x \in X$. Let us consider the following pullback diagram under the blow up map $\rho_X : \mathsf{Bl}_X(X) \longrightarrow X$

$$\mathbb{P}(E) \times_{X} \widetilde{X}_{x} = \mathbb{P}(\rho_{x}^{*}(E)) \xrightarrow{\widetilde{\rho_{x}}} \mathbb{P}(E)$$

$$\downarrow_{\pi'} \qquad \qquad \downarrow_{\pi}$$

$$\mathsf{BI}_{x} X \xrightarrow{\rho_{x}} X$$

Let $\widetilde{\xi}_x$ be the numerical equivalence class of the tautological bundle $\mathcal{O}_{\mathbb{P}(\rho_x^*E)}(1)$, and $\widetilde{E}_x := \widetilde{\rho_x}^{-1}(F_x)$, where F_x is the class of the fibre of the map π over the point x.

DEFINITION (HACON)

The **Seshadri constant** of E at $x \in X$ is defined as

$$\varepsilon(X,E,x):=\sup\Bigl\{\lambda\in\mathbb{R}_{>0}\mid\widetilde{\xi}_x-\lambda\widetilde{E}_x\text{ is nef}\Bigr\}.$$

Parabolic Vector bundles

• Let X be a connected smooth complex projective variety of dimension d, and let $D \subset X$ be an effective divisor on X.

Parabolic Vector bundles

- Let X be a connected smooth complex projective variety of dimension d, and let $D \subset X$ be an effective divisor on X.
- Let E be a torsion-free coherent \mathcal{O}_X -module. A **quasi-parabolic structure** on E with respect to D is a filtration by \mathcal{O}_X -coherent subsheaves

$$E = \mathcal{F}_1(E) \supset \mathcal{F}_2(E) \supset \cdots \supset \mathcal{F}_I(E) \supset \mathcal{F}_{I+1}(E) = E(-D),$$
 where $E(-D) := E \otimes_{\mathcal{O}_X} \mathcal{O}_X(-D)$. The above integer I is called the **length** of the filtration.

- Let X be a connected smooth complex projective variety of dimension d, and let $D \subset X$ be an effective divisor on X.
- Let E be a torsion-free coherent \mathcal{O}_X -module. A **quasi-parabolic structure** on E with respect to D is a filtration by \mathcal{O}_X -coherent subsheaves

$$E = \mathcal{F}_1(E) \supset \mathcal{F}_2(E) \supset \cdots \supset \mathcal{F}_l(E) \supset \mathcal{F}_{l+1}(E) = E(-D),$$
 where $E(-D) := E \otimes_{\mathcal{O}_X} \mathcal{O}_X(-D)$. The above integer l is called the **length** of the filtration.

• A parabolic structure on E with respect to D is a quasi-parabolic structure as above together with a system of **weights** $\{\alpha_1, \alpha_2, \dots, \alpha_I\}$, where each α_i is a real number such that $0 \le \alpha_1 < \alpha_2 < \dots < \alpha_{I-1} < \alpha_I < 1$. The numbers $\{\alpha_i\}_{i=1}^I$ are called **parabolic weights** and we say that α_i is attached to $\mathcal{F}_i(E)$.

- A parabolic vector bundle with parabolic divisor D is a vector bundle E with a parabolic structure with respect to D.
- For any parabolic vector bundle E_* defined as above, and for any $t \in \mathbb{R}$, define the following filtration $\{E_t\}_{t \in \mathbb{R}}$ of coherent sheaves parametrized by \mathbb{R} :

$$E_t = \mathcal{F}_i(E)(-[t]D),$$

where [t] is the integral part of t and $\alpha_{i-1} < t - [t] \le \alpha_i$ with $\alpha_0 = \alpha_l - 1$ and $\alpha_{l+1} = 1$. The filtration $\{E_t\}_{t \in \mathbb{R}}$ evidently determines the parabolic structure $(E, \mathcal{F}_*, \alpha_*)$ uniquely.

Consider the decomposition

$$D = \sum_{j=1}^{n} n_j D_j, \tag{1}$$

where every D_i is a reduced irreducible divisor, and $n_i \geq 1$. Let

$$f_j: n_j D_j \longrightarrow X$$

denote the inclusion map of the subscheme $n_j D_j$. For each $1 \leq j \leq n$, choose a filtration

$$0 = F_{l_j+1}^j \subset F_{l_j}^j \subset F_{l_j-1}^j \subset \cdots \subset F_1^j = f_j^* E.$$
 (2)

Fix real numbers α_k^j , $1 \le k \le l_j + 1$, such that

$$1 = \alpha_{l_{j+1}}^{j} > \alpha_{l_{j}}^{j} > \alpha_{l_{j-1}}^{j} > \dots > \alpha_{2}^{j} > \alpha_{1}^{j} \ge 0.$$

For every $1 \leq j \leq n$ and $1 \leq k \leq l_j + 1$, define the coherent subsheaf $\overline{F}_j^i \subset E$ using the following short exact sequences:

$$0 \longrightarrow \overline{F}_k^j \longrightarrow E \longrightarrow (f_j^* E)/F_k^j \longrightarrow 0.$$
 (3)

For $1 \le j \le n$ and $0 \le t \le 1$, let ℓ_t^j be the smallest number in the set of integers

$$\big\{k \,\in\, \{1,\,2,\,\cdots,\, l_j+1\} \ |\ \alpha_k^j \,\geq\, t\big\}.$$

Finally, set

$$E_{t} := \bigcap_{j=1}^{n} \overline{F}_{l_{t-[t]}}^{j}((t-[t])D) \subseteq E((t-[t])D). \tag{4}$$

The filtration $\{E_t\}_{t\in\mathbb{R}}$ in (4) defines a parabolic structure on E. It is straightforward to check that all parabolic structures on E, with D as the parabolic divisor, arise this way.

PARABOLIC VECTOR BUNDLES WITH RATIONAL

COEFFICIENTS

Henceforth we will always impose the following four conditions on the parabolic bundles E_* , with parabolic divisor D, that we will consider:

- The parabolic divisor $D = \sum_{i=1}^{n} n_i D_i$ is a normal crossing divisor, i.e., all $n_i = 1$ and D_i are smooth divisors and they intersect transversally.
- **9** For each $1 \leq j \leq n$, choose a filtration

$$0 = F_{l_j+1}^j \subset F_{l_j}^j \subset F_{l_j-1}^j \subset \cdots \subset F_1^j = f_j^* E.$$
 (5)

All F_i^i on D_i in are subbundles of f_i^*E for every i.

- All the weights α_j^i are rational numbers; so $\alpha_j^i = m_j^i/N$, where N is some fixed integer and $m_i^i \in \{0, 1, \dots, N-1\}$.
- Every point x of D has a neighborhood $U_x \subset X$, and a decomposition of $E|_{U_x}$ into a direct sum of line bundles, such that the filtration of all $E|_{U_x \cap D_i}$, $1 \le i \le n$, are constructed using the decomposition.

13 / 28

Associated Orbifold Bundles

Let $\psi: \Gamma \longrightarrow \operatorname{Aut}(Y)$ be a finite group Γ acting on Y. An **orbifold bundle** on Y, with Γ as the **orbifold group**, is a vector bundle V on Y together with a lift of the action of Γ on Y to V, i.e. Γ acts on the total space of V such that the action of any $g \in \Gamma$ gives a vector bundle isomorphism between V and $\psi(g^{-1})^*V$.

THEOREM (BISWAS)

Let E_* be a parabolic bundle on X. Then using the Galois cover

$$\gamma: Y \longrightarrow X$$

with Galois group Γ , we can construct an orbifold bundle E' on Y such that the parabolic bundle E_* is recovered from it by taking Γ -invariants of the direct image of the twists of E' using the irreducible components of D.

Parabolic Ampleness

DEFINITION (BISWAS)

A parabolic bundle E_* is parabolic ample (respectively, nef) if and only if the corresponding orbifold bundle E' is ample (respectively, nef) as a vector bundle (in the sense of Hartshorne).

PARABOLIC BUNDLES AS RAMIFIED BUNDLES

Let X be a smooth complex projective variety, and let D be a normal crossing divisor on X. A ramified principal $\mathrm{GL}(n,\mathbb{C})$ -bundle over X with ramification over D

$$\phi: E_{\mathrm{GL}(n,\mathbb{C})} \longrightarrow X$$

is a smooth complex quasiprojective variety equipped with an algebraic right action of $\mathrm{GL}(n,\mathbb{C})$

$$f: E_{\mathrm{GL}(n,\mathbb{C})} \times \mathrm{GL}(n,\mathbb{C}) \longrightarrow E_{\mathrm{GL}(n,\mathbb{C})}$$

satisfying the following five conditions:

- $\phi \circ f = \phi \circ p_1$, where p_1 is the natural projection of $E_{GL(n,\mathbb{C})} \times GL(n,\mathbb{C})$ to $E_{GL(n,\mathbb{C})}$,
- for each point $x \in X$, the action of $GL(n, \mathbb{C})$ on the reduced fiber $\phi^{-1}(x)_{red}$ is transitive,
- the restriction of ϕ to $\phi^{-1}(X-D)$ a principal $\mathrm{GL}(n,\mathbb{C})$ -bundle over X-D,

PARABOLIC BUNDLES AS RAMIFIED BUNDLES

• for each irreducible component $D_i \subset D$, the reduced inverse image $\phi^{-1}(D_i)_{red}$ is a smooth divisor and

$$\widehat{D} := \sum_{i=1}^{l} \phi^{-1}(D_i)_{red}$$

is a normal crossing divisor on $E_{GL(n,\mathbb{C})}$, and

• for any point $x \in D$, and any point $z \in \phi^{-1}(x)$, the isotropy subgroup $G_z \subset GL(n,\mathbb{C})$, for the action of $GL(n,\mathbb{C})$ on $E_{GL(n,\mathbb{C})}$, is a finite group, and if x is a smooth point of D, then the natural action of G_z on the quotient line $T_z E_{GL(n,\mathbb{C})} / T_z \phi^{-1}(D)_{red}$ is faithful.

PARABOLIC BUNDLES AS RAMIFIED BUNDLES

THEOREM (BALAJI, BISWAS AND NAGARAJ)

There is a natural bijective correspondence between the complex vector bundles of rank n on X and the principal $\mathrm{GL}(n,\mathbb{C})$ -bundles on X. This bijection sends a principal $\mathrm{GL}(n,\mathbb{C})$ -bundle F to the vector bundle $F \times^{\mathrm{GL}(n,\mathbb{C})} \mathbb{C}^n$ associated to F for the standard action of $\mathrm{GL}(n,\mathbb{C})$ on \mathbb{C}^n . This correspondence extends to a bijective correspondence between the ramified principal $\mathrm{GL}(n,\mathbb{C})$ -bundles with ramification over D and parabolic vector bundles of rank n with D as the parabolic divisor

PROJECTIVIZATION OF PARABOLIC BUNDLES

RESULT (BISWAS, LAYTIMI)

Let E_* be a parabolic vector bundle over X of rank n. Let

$$\phi: E_{\mathrm{GL}(n,\mathbb{C})} \longrightarrow X$$

be the corresponding ramified principal $GL(n, \mathbb{C})$ -bundle with ramification divisor D. Consider the standard action of $GL(n, \mathbb{C})$ on \mathbb{C}^n ; it induces an action of $GL(n, \mathbb{C})$ on the projective space \mathbb{P}^{n-1} . The **projectivization** of E_* , denoted by $\mathbb{P}(E_*)$, is defined to be the associated (ramified) fiber bundle

$$\mathbb{P}(E_*) := E_{\mathrm{GL}(n,\mathbb{C})}(\mathbb{P}^{n-1}) := E_{\mathrm{GL}(n,\mathbb{C})} \times^{\mathrm{GL}(n,\mathbb{C})} \mathbb{P}^{n-1} \longrightarrow X.$$

DEFINITION

Take any point $x \in D$ and any $z \in \phi^{-1}(x)$. Let n_x be the order of the finite group G_z . The number of distinct integers n_x as x varies over D is finite. Let

$$N(E_*) = \text{l.c.m.} \{ n_x \mid x \in D \}$$
 (6)

Consider the action of $\mathrm{GL}(n,\mathbb{C})$ on the total space of $\mathcal{O}_{\mathbb{P}^{n-1}}(N(E_*))$ constructed using the standard action of $\mathrm{GL}(n,\mathbb{C})$ on \mathbb{C}^n . Let

$$E_{\mathrm{GL}(n,\mathbb{C})}ig(\mathcal{O}_{\mathbb{P}^{n-1}}ig(N(E_*)ig)ig) \,:=\, E_{\mathrm{GL}(n,\mathbb{C})} imes^{\mathrm{GL}(n,\mathbb{C})}\,\mathcal{O}_{\mathbb{P}^{n-1}}ig(N(E_*)ig)\,\longrightarrow\, X$$

be the associated fiber bundle. As the natural projection $\mathcal{O}_{\mathbb{P}^{n-1}}(N(E_*)) \longrightarrow \mathbb{P}^{n-1}$ intertwines the actions of $\mathrm{GL}(n,\mathbb{C})$ on $\mathcal{O}_{\mathbb{P}^{n-1}}(N(E_*))$ and \mathbb{P}^{n-1} , it produces a projection

$$\mathcal{O}_{\mathbb{P}(E_*)}(1) := E_{\mathrm{GL}(n,\mathbb{C})}(\mathcal{O}_{\mathbb{P}^{n-1}}(N(E_*))) \longrightarrow E_{\mathrm{GL}(n,\mathbb{C})}(\mathbb{P}^{n-1}) = \mathbb{P}(E_*). \tag{7}$$

Parabolic Seshadri Constants

Let E_* be a parabolic nef vector bundle on a smooth projective variety X. We fix a point $x \in X$ and and let

$$\psi_{\mathsf{x}}:\mathsf{Bl}_{\mathsf{x}}(X)\longrightarrow X$$

be the blow up of X at x with exceptional divisor $E_x = \psi_x^{-1}(x)$. Consider the following fiber product diagram:

$$\mathsf{BI}_{\rho^{-1}(x)}(\mathbb{P}(E_*)) = \mathbb{P}(E_*) \times_X \mathsf{BI}_x(X) \xrightarrow{\widetilde{\psi_x}} \mathbb{P}(E_*)$$

$$\downarrow^{\widetilde{\rho}} \qquad \qquad \downarrow^{\rho}$$

$$\mathsf{BI}_x(X) \xrightarrow{\psi_x} X$$

The **parabolic Seshadri constant** of E_* at a point $x \in X$, denoted by $\varepsilon_*(E_*, x)$, is defined to be

$$\varepsilon_*(E_*, x) := \sup \left\{ \lambda \in \mathbb{R}_{>0} \mid \widetilde{\psi_x}^*(\xi) - \lambda \widetilde{\rho}^* E_x \text{ is nef} \right\}$$

where $\xi \equiv \mathcal{O}_{\mathbb{P}(E_*)}(1)$.

ALTERNATIVE CHARACTERIZATION

Let E_* be a parabolic nef vector bundle on a smooth complex projective variety X, and let $x \in X$ be a point of X.

$$\rho: \mathbb{P}(E_*) \longrightarrow X$$

be the projectiviazation map. Let $C_{\rho,x}$ be the set of all integral curves $C \subset \mathbb{P}(E_*)$ that intersect the fiber $\rho^{-1}(x)$ while not being contained in $\rho^{-1}(x)$. Then

$$\varepsilon_*(E_*, x) = \inf_{C \in \mathcal{C}_{\rho, x}} \left\{ \frac{\xi \cdot C}{\operatorname{mult}_x \rho_* C} \right\}.$$

Another Alternative Characterization

Let $E' \longrightarrow Y$ be the corresponding orbifold bundle over Y of a parabolic nef vector bundle E_* on X, where $\gamma: Y \longrightarrow X$ is a covering with Galois group $\Gamma = \mathsf{Gal}(\gamma)$. Consider the following fiber product diagram:

$$\mathbb{P}(E') \times_{Y} \mathsf{Bl}_{\gamma^{-1}(x)} Y \xrightarrow{\widetilde{\phi_{x}}} \mathbb{P}(E') \xrightarrow{\gamma'} \mathbb{P}(E_{*}) = \mathbb{P}(E')/\Gamma$$

$$\downarrow_{\widetilde{\tau}} \qquad \qquad \downarrow_{\tau} \qquad \qquad \downarrow_{\rho}$$

$$\mathsf{Bl}_{\gamma^{-1}(x)} Y \xrightarrow{\phi_{x}} Y \xrightarrow{\gamma} X = Y/\Gamma.$$

Let $E_{\gamma^{-1}(x)}$ be the exceptional divisor of the map ϕ_x and $\mathcal{O}_{\mathbb{P}(E')}(1) \equiv \xi'$.

$$\begin{split} \varepsilon_*(E_*,\,x) &= \, \textit{N}(E_*) \cdot \sup\Bigl\{\lambda \in \mathbb{R}_{>0} \mid \, \widetilde{\phi_x}^*(\xi') - \lambda \widetilde{\tau}^*(E_{\gamma^{-1}(x)}) \, \mathrm{is \ nef} \Bigr\} \\ &= \, \textit{N}(E_*) \cdot \inf_{C \in \mathcal{C}_{\tau,\gamma^{-1}(x)}} \left\{ \frac{\xi' \cdot C}{\sum\limits_{y \in \gamma^{-1}(x)} \mathsf{mult}_y \, \tau_* \, C} \right\}. \end{split}$$

SESHADRI'S CRITERION FOR PARABOLIC AMPLENESS

• E_* be a parabolic nef vector bundle on a smooth irreducible projective variety X. Then E_* is parabolic ample if and only if

$$\inf_{x\in X}\varepsilon_*(E_*,\,x)\,>\,0,$$

where the infimum is taken over all points of X.

• Let E_* be a parabolic nef vector bundle on X, and $x \in X$ a point. Then

$$\varepsilon_*(E_*, x) \leq \left(\frac{N(E_*)^{\dim \tau(W)} \xi'^{\dim W} \cdot [W]}{\binom{\dim W}{\dim \tau(W)} \cdot |\Gamma| (\xi'^{\dim W_{\gamma^{-1}(x)}} [W_{\gamma^{-1}(x)}])}\right)^{\frac{1}{\dim \tau(W)}},$$

as W ranges through the subvarieties of $\mathbb{P}(E')$ that meet $\tau^{-1}(\gamma^{-1}(x))$ without being contained in $\tau^{-1}(\gamma^{-1}(x))$. In the above inequality, $W_{\gamma^{-1}(x)} := \tau^{-1}(\gamma^{-1}(x)) \cap W$.

PARABOLI SESHADRI CONSTANTS OF PARABOLIC NEF VECTOR BUNDLES ON SMOOTH CURVES

For a parabolic vector bundle E_* , we define $\mu_{\min}^{par}(E_*)$ to be the parabolic slope of the minimal parabolic semistable subquotient of E_* . Note that if E' is the orbifold bundle on Y corresponding to E_* for the Galois morphism $\gamma: Y \longrightarrow X$ then we have

$$\mu_{\min}(E') = |\mathsf{Gal}(\gamma)| \cdot \mu_{\min}^{par}(E_*).$$

THEOREM

Let E_* be a parabolic ample vector bundle over a smooth irreducible projective curve C with parabolic divisor D. Then for any point $x \in C$, the parabolic Seshadri constant satisfies the following:

$$\varepsilon_*(E_*, x) = N(E_*) \cdot \mu_{\min}^{par}(E_*) \text{ when } x \notin D, \text{ and}$$

$$\varepsilon_*(E_*, x) \ge N(E_*) \cdot \mu_{\min}^{par}(E_*) \text{ when } x \in D.$$

In particular, $\varepsilon_*(E_*, x) \ge \frac{N(E_*)}{\operatorname{rank}(E)}$ for every point $x \in C$.

COMPUTING SESHADRI CONSTANTS BY RESTRICTING TO CURVES

THREOREM

Let E_* be a parabolic nef vector bundle on a smooth irreducible complex projective variety X, and let $E' \longrightarrow Y$ be the corresponding orbifold bundle over Y. Then

$$\varepsilon_*(E_*, x) = N(E_*) \cdot \inf_{C \subset Y} \left\{ \frac{\mu_{\min}(\nu^* E')}{\sum\limits_{y \in \gamma^{-1}(x)} \operatorname{mult}_y C} \right\},$$

where the infimum is taken over all irreducible curves $C \subset Y$ such that $C \cap \gamma^{-1}(x) \neq \emptyset$, and $\nu : \overline{C} \longrightarrow C$ is the normalization map.

PARABOLIC SESHADRI CONSTANTS FOR TENSOR PRODUCT AND SYMMETRIC POWER

Let E_* and F_* be two parabolic nef vector bundles on a smooth irreducible complex projective variety X having a common parabolic divisor $D \subset X$.

THEOREM:

• For any positive integer m and for every point $x \in X$, we have

$$\varepsilon_*(S^m(E_*), x) = m\varepsilon_*(E_*, x)$$

• For every point $x \in X$

$$\varepsilon_*(E_*\otimes F_*, x) = N(E_*\otimes F_*) \cdot \left\{ \frac{\varepsilon_*(E_*, x)}{N(E_*)} + \frac{\varepsilon_*(F_*, x)}{N(F_*)} \right\}.$$

Thank You!