Assistant Professor

Dr V S Baswanth Oruganti

Department of Chemistry


  1. Computational Quantum Chemistry
  2. Quantum Chemistry on Quantum Computers
  3. Computational Biochemistry



Acharya Nagarjuna University,
Andhra Pradesh,


IIT Guwahati


Linköping University


  • 2019-2021 – Post-Doctoral Researcher – Linnaeus University
  • 2017-2019 – Assistant Professor – GITAM University
  • 2011-2012 – SCIENTIST C – ISRO Satellite Centre

Research Interest

  • Tuning photochemical reactivity of diarylethenes by modulating excited-state aromaticity of the ethene bridge
  • Computational Studies on Molecular Mechanisms for Drug Resistance in Cancer
  • Computational design of donor-pi-acceptor type organic solar cells

Awards & Fellowships

  • 2010 – Junior Research Fellowship(JRF) – CSIR


  • B. Oruganti,* E. Lindahl, W. Amiri, R. Rahimullah, J. Yang, R. Friedman*, Allosteric Enhancement of the BCR-Abl1 Kinase Inhibition Activity of Nilotinib by Co-Binding of Asciminib, J. Biol. Chem. 2022, in press.
  • P. P. Kalapos, P. J. Mayer, T. Gazdag, A. Demeter, B. Oruganti,* B. Durbeej,* and G. London*; Photoswitching of Local (Anti)Aromaticity in Biphenylene-Based Diarylethene Molecular Switches, J. Org. Chem. 2022, in press.
  • B. Oruganti and R. Friedman; Activation of Abl1 Kinase Explored using Well-Tempered Metadynamics Simulations on an Essential Dynamics Sampled Path. J. Chem. Theory Comput. 2021, 17, 7260-7270, DOI: 10.1021/acs.jctc.1c00505 (Impact Factor: 6.006).
  • J. Wang, B. Oruganti, and B. Durbeej; Computational Comparison of Chemical and Isotopic Approaches to Control the Photoisomerization Dynamics of Light-Driven Molecular Motors. J. Org. Chem. 2021, 86, 5552–5559, DOI: 10.1021/acs.joc.1c00063 (Impact factor: 4.354).
  • D B. K. Kumar, T . S. Krishna, B. Oruganti, CV Pramod, G. S. Rao; Investigation of molecular interactions by volumetric, transport, spectral and DFT studies in some liquid binaries of N-methyl-2-pyrrolidone with N-alkyl anilines in the temperature range 303.15–318.15 K. J. Mol. Liq. 2021, 337, 116449, DOI: 10.1016/j.molliq.2021.116449 (Impact factor: 6.165).
  • S. Karlapudi, Z. Liu, Q. Bi, V. Govind, I. Bahadur, O. Baswanth, Ch. Prasad; Molecular interactions in liquid mixtures containing o-cresol and 1-alkanols: Thermodynamics, FT-IR and computational studies. J. Mol. Liq. 2020, 305, 112798, DOI: 10.1016/j.molliq.2020(Impact factor: 6.165).
  • J. Wang, B. Oruganti, and B. Durbeej; Unidirectional Rotary Motion in Isotopically Chiral Molecular Motors: A Computational Analysis. Org. Lett. 2020, 22, 7113–7117, DOI: 10.1021/acs.orglett.0c02436 (Impact factor: 6.091).
  • B. Oruganti,* P. P. Kalapos, V. Bhargav, G. London,* and B. Durbeej;* Photoinduced Changes in Aromaticity Facilitate Electrocyclization of Dithienylbenzene Switches. J. Am. Chem. Soc. 2020, 142, 13941–13953, DOI: 10.1021/jacs.0c06327 (Impact factor: 14.500). *Corresponding Author
  • J. Wang, B. Oruganti; and B. Durbeej; A Straightforward Route to Aromatic Excited States in Molecular Motors that Improves Photochemical Efficiency. ChemPhotoChem 2019, 6, 450–460, DOI: 10.1002/cptc.201800268 (Impact factor: 2.838).
  • B. Durbeej, J. Wang and B. Oruganti; Molecular Photoswitching Aided by Excited-State Aromaticity. ChemPlusChem. 2018, 83, 958-967, DOI: 10.1002/cplu.201800307 (Impact factor: 2.753).
  • B. Oruganti, J. Wang and B. Durbeej; Quantum Chemical Design of Rotary Molecular
    Motors. Int. J. Quantum Chem. 2018, 118, e25405, DOI: 10.1002/qua.25405 (Impact factor: 1.747).
  • B. Oruganti, J. Wang and B. Durbeej; Excited-state Aromaticity Improves Molecular Motors: A Computational Analysis. Org. Lett. 2017, 19, 4818-4821, DOI: 10.1021/acs.orglett.7b02257 (Impact factor: 6.091).
  • J. Wang,* B. Oruganti* and B. Durbeej; Light-driven Unidirectional Rotary Molecular Motors Without Point Chirality: A Minimal Design. Phys.Chem.Chem.Phys. 2017, 19, 6952-6956, DOI: 10.1039/C6CP08484B (Impact factor: 3.430). *Co-first authorship
  • B. Oruganti, C. Fang and B. Durbeej; Assessment of a Composite CC2/DFT Procedure for Calculating 0–0 Excitation Energies of Organic Molecules. Mol. Phys. 2016, 114, 3448–3463, DOI: 10.1080/00268976.2016.1235736 (Impact factor: 1.767).
  • B. Oruganti, J. Wang and B. Durbeej; Computational Insight to Improve the Thermal Isomerization Performance of Overcrowded Alkene-Based Molecular Motors Through Structural Redesign. ChemPhysChem 2016, 17, 3399–3408, DOI: 10.1002/cphc.201600766 (Impact factor: 3.144).
  • B. Oruganti and B. Durbeej; On the Possibility to Accelerate the Thermal Isomerizations of Overcrowded Alkene-Based Rotary Molecular Motors with Electron-Donating or Electron-Withdrawing Substituents. J. Mol. Model. 2016, 22, 219, DOI: 10.1007/s00894-016-3085-y (Impact factor: 1.346).
  • B. Oruganti, C. Fang and B. Durbeej; Computational Design of Faster Rotating Second-Generation Light-Driven Molecular Motors by Control of Steric Effects. Phys. Chem. Chem. Phys. 2015, 17, 21740–21751, DOI: 10.1039/C5CP02303C (Impact factor: 3.430).
  • C. Fang, B. Oruganti and B. Durbeej; How Method-Dependent are Calculated Differences Between Vertical, Adiabatic, and 0−0 Excitation Energies? J. Phys. Chem. A 2014, 118, 4157–4171, DOI: 10.1021/jp501974p (Impact factor: 2.600).
  • C. Fang, B. Oruganti and B. Durbeej; Computational Study of the Working Mechanism and Rate Acceleration of Overcrowded Alkene-Based Light-Driven Rotary Molecular Motors. RSC Adv. 2014, 4, 10240–10251, DOI: 10.1039/C3RA46880A (Impact factor: 3.070).
  • Z. Khan, D. Barpuzary, O. Baswanth, S. Sutradhar and M. Qureshi; Directed Growth of 1D Cadmium Sulfide by Chemically Anchored Al2O3 and ZnO Nanoparticles. Mat. Lett. 2011, 65, 1168–1171, DOI: 10.1016/j.matlet.2011.01.029 (Impact factor: 3.204).

Contact Details