Assistant Professor

Dr Ratnadeep Acharya

Department of Mathematics

Interests

  • Analytic Number Theory

Education

2009

Presidency College,
University of Calcutta

BSc

2011

Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI),

MSc

2018

Indian Statistical Institute,
Kolkata

PhD

Professional Service

  • 14. 05. 2018 to 15.04.2019 – Post Doctoral Fellow at Harish-Chandra Research Institute, Prayagraj
  • 16.04.2019 to 30.04.2022 – NBHM Post Doctoral Fellow at RKMVERI, Belur Math
  • 02.05.2022 to 17.07.2023 – Post Doctoral Fellow at Harish-Chandra Research Institute, Prayagraj

Research Interest

  • 1.Modular analogues of classical problems in Number Theory
  • 2.Strong estimation of exponential sums involving Fourier coefficients of cusp forms
  • 3.Subconvexity bounds for $L$-functions, attached to cusp forms

Awards & Fellowships

  • 2009– NBHM M.Sc. fellowship– DAE
  • 2010 (December)– NET JRF– CSIR
  • 2018 – NBHM post-doctoral fellowship– DAE

Publications

  • 1. An analogue of the Bombieri-Vinogradov theorem for Fourier coefficients of cusp forms - R. Acharya - Mathematische Zeitschrift, 288 (1), 23 - 37 (2018).
  • 2. Strong orthogonality between the M{" o}bius function, additive characters and coefficients of the $L$-functions of degree three - R. Acharya - Journal of Number Theory - 203, 211 –229 (2019).
  • 3. Subconvexity bound for $GL(2)$ $L$-functions: t-aspect - R. Acharya , S. Kumar, G. Maiti and S. Singh - Acta Arithmetica - 194, 111 - 133 (2020).
  • 4. An exponential sum involving Fourier coefficients of eigenforms for $SL(2,mathbb{Z})$ - R. Acharya and S. Singh - The Ramanujan Journal - 54, 699 - 716 (2021)
  • 5. Exponential sums of squares of Fourier coefficients of cusp forms - R. Acharya - Proc. Indian Acad. Sci. Math. Sci.- 130, 24 (2020)
  • 6. A twist of the Gauss Circle Problem by holomorphic cusp form - R. Acharya - Research in Number Theory - 8, 1-14, (2022)
  • 7. $t$-aspect subconvexity for $GL(2) times GL(2)$ $L$-function - R. Acharya, P. Sharma and S. Singh - Journal of Number Theory - 240, 296-324 (2022)
  • 8. A Modular Analogue of a Problem of Vinogradov - R. Acharya, S. Drappeau, S. Ganguly and O. Ramare - to appear in The Ramnajujan Journal.

Contact Details

  • E-mail id: ratnadeep.a@srmap.edu.in
TOP