As a significant contribution to science, Assistant Professor Dr Amit Chakroborty and his Doctoral Scholar, Arindam Basu, from the Department of Physics have published a groundbreaking paper titled, Viability of boosted light dark matter in a two-component scenario in the Physics Review D (Nature Index ) Journal. The research explores a two-component dark matter model and addresses the theoretical challenges in hopes of improving our understanding and painting a complete picture of dark matter.
Abstract
We study the boosted dark matter (BDM) scenario in a two-component model. We consider a neutrinophilic two-Higgs doublet model (ν2HDM), which consists of one extra Higgs doublet and a light right-handed neutrino. This model is extended with a light (∼ 10 MeV) singlet scalar DM ϕ3, which is stabilized under an extra dark ZDM symmetry and can only effectively annihilate through the CP even scalar H. Although the presence of a light scalar H modify the oblique parameters to put tight constraints on the model, the introduction of vectorlike leptons (VLL) can potentially salvage the issue. The vectorlike doublet N and singlet χ are also stabilized through dark ZDM symmetry. The lightest vectorlike mass eigenstate (χ1 ∼ 100 GeV) is the second DM component of the model. Individual scalar and fermionic DM candidates have Higgs/Z mediated annihilation, restricting the fermion DM in a narrow mass region while a somewhat broader mass region is allowed for the scalar DM. However, when two DM sectors are coupled, the annihilation channel χ1χ1 → ϕ3ϕ3 opens up. As a result, the fermionic relic density decreases, and paves way for broader fermionic DM mass region with under-abundant relic: a region of [30 − 65] GeV compared to a narrower [40 − 50] GeV window for the single component case. On the other hand, the light DM ϕ3 acquires significant boost from the annihilation of χ1, causing a dilution in the resonant annihilation of ϕ3. This in turn increases the scalar DM relic, allowing for a smaller mass region compared to the individual case. The exact and underabundant relic is achievable in a significant parameter space of the two-component model where the total DM relic is mainly dominated by the fermionic DM contribution. The scalar DM is found to be sub-dominant or equally dominant
Practical Implementation/ Social Implications of the Research:
This research explores a new idea in the search for dark matter, the invisible substance that makes up most of the matter in our universe. Instead of assuming dark matter is made of just one kind of particle, this study investigates a two-component model, where a heavier dark matter particle can decay or interact to produce a lighter, faster one. These “boosted” light dark matter particles could leave detectable traces in experiments here on Earth. The study carefully examines how this model fits with current cosmological observations and what conditions are needed for it to work.
While the work is theoretical, it has strong practical implications: it can guide ongoing and future experiments in detecting dark matter more effectively. Understanding dark matter is one of the most important unsolved problems in physics, and progress here could lead to understanding more about the picture of the universe. In the broader sense, such deep-space research inspires innovation, sharpens technology, and fuels curiosity-driven science that ultimately benefits society.
Collaborations:
This work has been done in collaboration with Mr Arindam Basu, PhD Scholar, the Department of Physics, SRM University-AP.
Future Research Plans:
- Study of the Dark Matter Direct Detection prospects.
- Study of the Dark Matter Indirect Detection prospects.
- Searching new physics at energy frontier.