yoga day

Yoga essentially refers to exploring one’s highest self through the unison of mind and body. The 3000-year-old tradition of yoga is hailed worldwide as a panacea to all human ailments. Yoga promotes holistic well-being through a combination of mindful and muscular practices. As the society is caught in an endless chase for worldly happiness, the philosophy of yoga gains immense importance to regulate and moderate human lives. It reveals the magic of remaining happy and tranquil in being oneself. The ultimate goal of yoga is to reach a sustained state of pure awareness.

The Department of Student Affairs is celebrating International Yoga Day 2022 to pay respect to this invaluable gift of India’s ancient tradition and to illuminate students on the need to make yoga an essential part of their day-to-day lives.


Date: June 21, 2022

Time: 3.30 pm

Venue: ALC 4

The resource persons for the day are Mr Venkata Krishna Kumar S, Associate Professor, Department of Architecture, School of Planning and Architecture-Vijayawada and Mr Ram Pavan, Broadcast Engineer, Doordarshan Kendra, Vijayawada. Mr Venkata Krishna Kumar is a practitioner of Heartfulness for 19 years and is also a certified trainer of Heartfulness since 2021. Mr Ram Pavan has also been practising Heartfulness yoga for the past 15 years and is serving as a trainer with Heartfulness institute with a mission to uplift the standards of life.

Join the celebration to disseminate the power of #yogaforself and #yogaforhumanity.


Facing an interview is a nightmare for many. There may be multiple factors lowering your level of confidence. Your depth of knowledge, ability to communicate, body language, dressing style, and an endless list of reasons could affect you in being yourself during an interview. While most of us are highly qualified academically, many are still groping in the dark to present ourselves as professionally qualified. And the sad fact is that, it is your professional persona that wins you a better chance of clearing the interview than your academic qualifications.

The Directorate of Alumni Affairs has scheduled a webinar on ‘How to succeed in an Interview’ with our notable alumni, Aayusi Biswas and Tuhin Sarkar from the Class of 2021, Computer Science and Engineering. Aayusi currently holds the position of Associate QA Software Engineer at Sabre Travel Technologies while Tuhin works as a Principal Analyst at AB InBev.

Date: June 18, 2022

Time: 5.00 pm to 6.00 pm IST

The session aims to groom students to give out their best in any interview. Effective training and practice sessions can bridge the gap in one’s academic expertise and career advancement. The more confident you are in being yourself, the better your possibility of winning your dream job.

Register for the session and walk in confidently for all the interviews ahead!

aaditya jain

The leaders of tomorrow are defined by the clarity of thought in translating their vision into action. Their words reflect the undying spirit to make it big in life and brace up the world for unforeseen challenges in the times to come. Currently pursuing Master’s in Management at ESMT Berlin, Mr Aaditya Jain, the alumnus of Class of 2021, Computer Science and Engineering, is one such promising leader who is on an endeavour to gear up his personal and professional limits with a solid vision and impeccable work ethic. The high-end Business magazine of Europe, ‘Brainz’ has recently featured his article titled ‘How to Be A Leader Even If You Don’t Have A Title (Yet)’.

Brainz magazine is a global digital periodical that brings influential entrepreneurs, coaches, and business experts to share their knowledge and stories with the world. It features articles across various themes- exploring business innovations, leadership mindsets, aspirational lifestyles, and many more. The magazine aims to disperse inspiring content to augment the quality of life in all aspects. In an interview with Snježana “Ana” Billian, Aaditya shared the top four tips on how to show leadership at work, even if you don’t have a leadership title. As far as he is concerned, one must lead oneself before venturing out to lead others.

Aaditya pronounces the importance of self-awareness as it gives the opportunity to capitalize on one’s strengths and weaknesses to create as much value as possible in every situation. “One of the most powerful things I was told by one of my professors back during my undergrad is: We have all the resources within us. This statement inspired me to embark on a journey of self-discovery” he remarked. Aaditya is also aware of the huge benefit of the internet. Sharing one’s views and experiences online does not require a title. He regularly shares his experience at work and the lessons he learned on leadership online. This makes it easier for him to reach out to like-minded people and create a shared value.

“The need to mould oneself as a proactive communicator and concoct a support network at professional space is essential to ensure one’s career advancement”, says Aaditya. He believes, that asking out for help is a quality that must be encouraged. He further went on to divulge how moving to Germany and settling in was not an easy job. But according to him, the greatest challenge was how to make the most out of it. Success in the words of Aaditya is, “Living my values while continuously growing and inspiring human leadership at work”.

Here is the link to his article:

protein nanocluster

Proteins are the most vital life forms which maintain close coordination with almost living activities through their biological functions. Nevertheless, in most cases, proteins suffer from low charge (electron) transfer efficiency as they are mainly made of insulating organic molecules. The interdisciplinary research publication, of Dr Sabyasachi Mukhopadhyay and Dr Sabyasachi Chakrabortty from the Department of Physics & Department of Chemistry respectively, along with their PhD scholars: Ms Ashwini Nawade, Mr Kumar Babu Busi and Ms Kunchanapalli Ramya, envisions the molecular-level understanding of the charge transport behaviour of various protein-metal nanocluster hybrid.

The article titled ‘“Improved Charge Transport across Bovine Serum Albumin – Au Nanoclusters’ Hybrid Molecular Junction” was featured in the prestigious Q1 journal ACS Omega (IF: 3.512), published by the ‘American Chemical Society’. They successfully incorporated Gold Nanoclusters inside the protein backbone leading to an increase in their conductivity. This will provide new avenues for the rational design of bioelectronic devices with optimized features. The BSA-Au cluster has been a promising model for bioelectronic functionalities. With an increase in their current carrying capacity, they can be used for many more applications, especially as the interface between tissue and organ in biocompatible devices. The research team is also planning to work with various protein dopants to understand their charge transport mechanism. These studies will help in using the protein for various applications mainly in bioimplants or biosensors for drug testing and diagnostics purposes.

Abstract of the Research

Proteins, a highly complex substance, have been the essential element in the living organism where various applications are envisioned due to their biocompatible nature. Apart from protein’s biological functions, contemporary research mainly focuses on their evolving potential associated with nanoscale electronics. Here, we report one type of chemical doping process in model protein molecules (BSA) to modulate its electrical conductivity by incorporating metal (Gold) nanoclusters on the surface or within it. The as-synthesized Au NCs incorporated inside the BSA (Au 1 to Au 6) were optically well characterized with UV-Vis, time-resolved photoluminescence (TRPL), X-ray photon spectroscopy, and high-resolution transmission electron microscopy techniques. The PL quantum yield for Au 1 is 6.8% whereas Au 6 is 0.03%. In addition, the electrical measurements showed ~10-fold enhancement of conductivity in Au 6 where maximum loading of Au NCs was predicted inside the protein matrix. We observed a dynamic behaviour in the electrical conduction of such protein-nanocluster films, which could have real-time applications in preparing biocompatible electronic devices.

water pollution

Water pollution continues to be one of the serious concerns facing the country. The ensuing scenario of eutrophication and harmful algal blooms has exacerbated the menace. This demands wholescale water management techniques to segregate the pollutants, retrieve useful nutrients, and treat the water effectively for sustainable use. Dr Karthik Rajendran and his PhD scholar, Mr Sarath Chandra, from the Department of Environment Science have published a paper discussing various nutrient recovery methods and their consequential outcomes. The research was done in collaboration with Dr Deepak Kumar from SUNY College of Environmental Science and Forestry, Syracuse, NY and Dr Richen Lin from Southeast University, Nanjing, China.

The article titled, “Nutrient recovery from wastewater in India: A perspective from mass and energy balance for a sustainable circular economy” was published in Bioresource Technology Reports (Q1 Journal), having an Impact Factor of 4.41. Their research investigates the possibilities of recovering Nitrogen (N) and Phosphorous (P) from wastewater in terms of technology, energy, and economic point of view. Excessive presence of Nitrogen and Phosphorous can result in eutrophication and algal blooming. These nutrients also pose a harmful threat to infrastructure. Nutrient recovery can mitigate these challenges and improve the quality of water.

Phosphorus is one of the limited resources available on earth and a key ingredient in fertilizer production. The recovery process also helps in transforming wastewater into resource pools that can efficiently churn out valuables that hold the key to a sustainable future. This will help reduce the imports of fertilizers and bring down the emissions to half in producing fertilizers. Their findings will also pave the way for making necessary policies to reduce water pollution and recover nutrients. As two-thirds of wastewater remains uncollected, they claim that effective treatment and water management practices can save around 800 crores per annum. Their future research plan also includes the experimental analysis of the nutrient recovery system.

Abstract of the Research

Wastewater (WW) is a potential source to recover N, and P, whereas, in India, it is scarcely explored. In this work, four different nutrient recovery methods were compared from a mass- and energy-balance perspective to understand the overall process flow. From 1000-m3 WW, chemical precipitation yielded 33.8 kg struvite, while micro-algae resulted in 299.1 kg (dry powder). Energy consumption was lowest for the fuel cells at 216.2 kWh/1000 m3, while microalgae used the highest energy at 943.3 kWh/1000 m3. Nonetheless, the cost-saving analysis showed that microalgae (78.6$/1000 m3) as a nutrient recovery choice, had higher savings than any other methods compared. For a country like India, where two-thirds of urban wastewater is untreated, wastewater-biorefinery options such as nutrient recovery hold the key to a sustainable circular economy.



Surface-enhanced Raman Spectroscopy (SERS) is a nuanced chemical technique that amplifies the Raman scattering of molecules by utilising plasmonic nanostructured materials. SERS operates as a powerful detection tool that allows for the structural fingerprinting of a molecule. The ultra-high sensitivity and selectivity of the process offer it a vast array of applications in surface and interface chemistry, nanotechnology, biology, biomedicine, food science, environmental analysis and other areas.

Dr J P Raja Pandiyan and his PhD scholar, Ms Arunima Jinachandran from the Department of Chemistry have been keenly involved in exploring the possibilities of SERS technology in food science and other fields. The safety and quality concerns related to food were the primary reasons that impelled them to step into this domain. Their article “Surface-enhanced Raman spectroscopy for food quality and safety monitoring” was published in the book Nanotechnology Applications for Food Safety and Quality Monitoring, published by Elsevier. The article was published in collaboration with Dr Selvaraju Kanagarajan from the Swedish University of Agricultural Sciences.

SERS 2As an analytical technique, SERS possesses several advantages such as non-destructive, sensitive, and selective. In the chapter, the necessity, and applications of SERS in food science are elaborately discussed. They have also discussed all the possible food contaminants and how to identify them using SERS to ensure food quality. This book will serve as an enlightening read to research groups who are working on Raman, surface-enhanced Raman spectroscopy, analytical chemistry, and food quality analysis.


special stove

Innovation is seeing what everybody has seen and thinking what nobody has thought.

-Dr Albert Szent-Gyorgyi

The uncompromising vision to mould the students to be the leaders of tomorrow and to gear them up to think beyond the possible has been the propelling factor that drives each student of SRM University-AP to tread the unexplored paths and embrace the unseen challenges. They come out as transformed individuals, outgrown with enriching experiences, capable of introducing new changes into the world. Students are offered ample space and time to ideate, innovate, and build themselves into coming-of-age professionals.

Innovator Square is one such platform set up by the Entrepreneurship-cell to nurture innovative ideas and thoughts having the potential to be converted into a meaningful product or service. Each month, it brings out young talents who have expanded their limits to fashion out an unforeseen solution to the mundane troubles of society. The title winners of the ‘Innovator of the Month’ contest this time, are, Shaik Nagoor, Kalakoti Smaran, and Komirisetti Gopi, from the Department of Mechanical Engineering. They have designed a special stove that runs on used cooking oil.

Introducing innovations out of bits and pieces of the commonest of things adds value to our everyday lives. These budding masterminds deserve acknowledgement for their incredible solution to utilise the leftover oil. Cooking oil is a daily essential abundantly used in food processing industry, such as restaurants and fast food, as well as in households. Reusing the oil is found to have harmful effects as it contains carcinogenic substances, that may lead to cancer or other chronic health disorders. Hence the common practice followed is to dump it in open soil. However, this will affect soil fertility and a myriad of environmental concerns.

Their motive to offer a sustainable solution to this menace is what prompted them to devise a user-friendly stove that will consume the used cooking oil. This will also serve as a better alternative to LPG, saving up to 50% of the expenditure. The students expressed their happiness in having made their tiny share of contribution for the well-being of their society. They also thanked their faculty and the university for extending unswerving support to complete this project. “We can never thank enough Dr Venkata Nori sir for guiding and supporting us from the beginning of our project, he helped us achieve this innovation, we are also thankful to Mr Udayan Bakshi sir for helping us to build a start-up”, they remarked.

TTD Event

Tallapaka Annamacharya, popularly known as ‘Anamayya’, was a 15th-century saint and the earliest known Indian musician to compose songs called sankeertanas in praise of Lord Venkateswara. His compositions have strongly influenced the structure of Carnatic Music and are still making rounds in various music concerts and performances the world over.

Having composed countless odes to Sri Tirumala Venkateswara Swamy, Annamacharya is widely regarded as the Pada Kavitaa Pitamaha of Telugu poetry. He was a reputed singer and an eminent poet who gave life to the Telugu song and lyricism by blending the Telugu ‘Andhra Vedam’ for the easy understanding of the common man, with the summary of ‘Sanskrit Vedas’.

Tirumala Tirupati Devasthanams, also known as TTD, are on an endeavour to preserve the rich heritage of his compositions. They have set music to over 800 compositions of Annamacharya that have amassed wide popularity among the devotees. We are delighted to announce that the following TTD musicians will be offering a beautiful rendition of Annamacharya’s compositions at our university campus:

Mr M B Loganatha Reddy (Singer)

Mr Srinivasulu (Keyboard)

Mr Bujji (Tabla)

Mr Ramachandraiyya (Shruthi)

Lend your ears to their soothing and heart-warming performance.

Date: June 8, 2022

Time: 4.00 pm to 5.00 pm

Venue: Auditorium

udaya shankar

The Department of Electronics and Communication Engineering is glad to announce that Dr V Udaya Sankar, Assistant Professor has published the patent (App no. 202141056542), ‘A system and method with Matrix enabled Road distress classification with reduced computational complexity and reduced memory requirements’, in collaboration with Dr Siva Sankar Yellampalli and Ms Gayathri Lakshmi Chinthakrindi.

This work has applications related to visual inspection systems. While this research considers road crack detection application, the same can be extended to various applications such as leaf disease prediction, covid prediction etc. This invention provides an alternative approach instead of using traditional machine learning algorithms that has less computational complexity as opposed to deep neural networks that take more complex operations. This method will also lead to further research in matrix-based machine learning applications related to image processing and image classification.

The research team is planning to collaborate with Efftronics Systems Pvt ltd. for PCB defect detection and discussions are initiated with some start-ups for visual inspection applications. Their future research plan is to look deeper into these algorithms in combination with some of the deep neural networks to reduce computational complexity. In addition, Dr Udaya Sankar is also looking forward to establishing his own start-up in the incubation centre soon.

Abstract of the Research

A method for image classification is provided, wherein, the pre-processed gray scale image is first sent to the feature extraction block, and the said feature extraction block considers every image as a matrix and computes the metrics for features, viz., 1) EMD distance which is popularly known as Wassertain distance/Earth movers distance and is computed with respect to block image and 2) Frobenius Norm which is the square root of the sum of the absolute squares of its elements and finally, 3) Condition Number, which measures the ratio of the maximum relative stretching to the maximum relative shrinking that matrix does to any non-zero vectors. This method is preferred over the existing methods due to the drastic reduction in computational complexities and, utilizing lesser memory. Also, with this method and system, the communicational complexities too are significantly reduced and also, and the results yielded are far more significantly accurate.


sheela singh

High-entropy alloys (HEAs) are gaining research significance in recent times as they propose novel alloy designs and concepts demonstrating better performance. HEAs constitute multiple principal elements in varying concentrations and combinations to produce new materials with excellent physical properties and superior performance at extreme temperature conditions. Recent studies have brought out a few high-entropy alloys possessing exceptional properties, even capable of challenging the existing theories and models for conventional alloys. However only very little has been explored within this multidimensional space leaving limitless possibilities to be explored and materialized.

Dr Sheela Singh, from the Department of Mechanical Engineering, has been conducting rigorous research in this domain and she has published research articles proposing novel ideas to tweak the properties of HEAs. In one of the articles co-authored by Dr Sheela, “Effect of minute element addition on the oxidation resistance of FeCoCrNiAl and FeCoCrNi2Al high entropy alloy”, published in the journal Advanced Powder Technology, she investigates the effect of Ti0.1 and Ti0.1Si0.1 addition on the high-temperature isothermal oxidation behaviour of dense FeCoCrNiAl and FeCoCrNi2Al high entropy alloys.

Mechanical properties such as hardness & young’s modulus, thermal properties such as melting temperature, specific heat capacity and coefficient of thermal expansion (CTE) were investigated by Nano hardness tester (NHT), differential scanning calorimetry (DSC) and dilatometer, respectively. The phases present in the HEAs produced by hot vacuum pressing and after isothermal oxidation were characterized by X-ray diffraction, Scanning Electron Microscopy and Raman Spectroscopy.

The weight gain recorded after isothermal oxidation for 5,25,50 and 100 hours at 1050°C was found to be parabolic in nature. X-ray diffraction analysis (XRD), as well as Raman spectroscopy analysis of HEA’s oxidized at 1050°C for 100 hours, shows the formation of the Al2O3 phase. A homogeneous thin oxide scale without any discontinuity was observed throughout the cross-section. It has been confirmed that Ti & Si addition in minute amount (0.1 at. % each) improves the mechanical properties and oxidation resistance as well as reduces the waviness of the oxide scale.

Another article co-published by her, “Enhanced Magnetization with Increased Chromium Concentration in FeCoCrxNi2Al High-Entropy Alloy”, in Materials and Science Technology, reports the effect of increasing the concentration of antiferromagnetic element Cr in FeCoCrxNi2Al (x = 0.5, 1.5) High Entropy Alloy (HEA) on their magnetic properties. It was found that the structure and composition of different phases, and the likely degree of spinodal decomposition in the Cr-Fe rich BCC phase significantly affects the magnetic properties.

Interestingly, the sample with Cr concentration x=1.5 showed two times larger saturation magnetization as compared to x=0.5. Furthermore, the magnetization versus temperature response shows a multi-phase character and exhibits distinct behaviour in low temperature and high-temperature regimes in both samples. The obtained soft ferromagnetic behaviour of these HEAs is crucial for the development of a new class of HEA for various applications.

The considerable structural and functional potential, as well as the richness of design, make HEAs promising candidates for new applications prompting further studies in the field. There remains a vast compositional space that is yet to be discovered. New studies have to be initiated finding out effective ways to recognise regions within this space where high-entropy alloys with potentially interesting properties may be lurking. Dr Sheela’s research is a right step in this direction to pave the way for fruitful developments in the future.