research news SRMAP

The Department of Electronics and Communication Engineering has come out with yet another rewarding publication, “Energy-Efficient Hybrid Relay – IRS aided wireless IoT network for 6G communications”, in the Electronics Journal, with Impact Factor 2.4. The article was published by Mr Rajak Shaik, PhD Scholar, in collaboration with the faculty members; Dr Sunil Chinnadurai, Dr Karthikeyan Elumalai and Dr Inbarasan Muniraj. This research is the first of its kind, which examines and compares the impact of relay-aided, IRS-aided, and novel hybrid relay-IRS-aided wireless IoT networks for 6G communications in terms of Energy Efficiency.

The article examines Energy Efficiency as a function of user distance and various SNR (Signal-to-noise ratio) values. The Energy Efficiency with fixed and varying numbers of IRS elements is analysed for the proposed IoT network. The results show that the proposed hybrid relay-IRS-assisted IoT network outperforms both the conventional relay and IRS-aided wireless IoT networks. The hybrid relay-IRS-aided IoT network can fulfil the requirements of high data rate, reliable data transfer, and large bandwidth needed for 6G communications. The multiple IRS concept can also be used in 6G communications at high SNR values to reduce both the cost and additional power consumption of wireless IoT networks. Their future research plan also includes the real-time implementations to improve the energy efficiency for wireless IoT networks with IRS in 6G communications.

Abstract of the Research

Intelligent Reflecting Surfaces (IRS) have been recognized as presenting a highly energy-efficient and optimal solution for future fast-growing 6G communication systems by reflecting the incident signal towards the receiver. A large number of Internet of Things (IoT) devices are distributed randomly in order to serve users while providing a high data rate, seamless data transfer, and Quality of Service (QoS). The major challenge in satisfying the above requirements is the energy consumed by the IoT network. Hence, in this paper, we examine the energy efficiency (EE) of a hybrid relay-IRS-aided wireless IoT network for 6G communications. In our analysis, we study the EE performance of IRS-aided and DF relay-aided IoT networks separately, as well as a hybrid relay-IRS-aided IoT network. Our numerical results showed that the EE of the hybrid relay-IRS-aided system has better performance than both the conventional relay and the IRS-aided IoT network. Furthermore, we realized that the multiple IRS blocks can beat the relay in a high SNR regime, which results in lower hardware costs and reduced power consumption.

faculty achievement SRMAP

Dr Sujith Kalluri, Assistant Professor of the Department of Electronics and Communication Engineering, has been elected as the Honorary Secretary of the Institution of Electronics and Telecommunication Engineers (IETE), Vijayawada Chapter for the period, 2022-24. Dr Kalluri is one of the young and spirited faces of SRM University-AP who has already borne out his charisma and capacity as an influential teacher and passionate researcher. He is also the Assistant Director of Alumni Affairs, a forum that oversees and follows up on the activities of students graduating from the University.

SRM University-AP is proud and privileged to celebrate this achievement as Dr Kalluri is on a roll to make greater strides in his professional career. Being the youngest officer to assume the role of secretary at the office of IETE Vijayawada makes this even more special an accomplishment. “I am indeed privileged to assume the role of Honorary Secretary of the Institution of Electronics and Telecommunication Engineers (IETE) Vijayawada Chapter. This is an incredible opportunity to collaborate with various academic and industrial experts in relevant domains” he exclaimed.

IETE is India’s leading recognised professional society devoted to the advancement of Science and Technology in electronics, telecommunications and IT. The institution provides leadership in scientific and technical areas of direct importance to the national development and economy. The government of India has recognised IETE as a Scientific and Industrial Research Organisation (SIRO). Dr Kalluri intends to utilise this opportunity to conduct technical events, such as conferences, symposia, and exhibitions, that would benefit the student community to be industry ready and acquaint with different professional networking circles.

Dr Kalluri is an active member of the World Academic-Industry Research Collaboration Organization (WAIRCO), the Institute of Electrical and Electronics Engineers (IEEE), and the Australian Nanotechnology Network (ANN) among many others. “It is my passion to be associated with professional bodies. I take this as an exciting opportunity to build my leadership and organising skills that could facilitate my professional growth” remarked Dr Kalluri. “I would also like to convey my gratitude to the management and leadership teams at SRM University-AP who have always supported me in terms of availing such opportunities” he maintained.

Higher studies webinar SRM AP

Are you an aspiring business enthusiast seeking to learn from the top-tier B schools in the world? Do you wish to hone your business acumen with effective training and expert guidance? We present to you an opportunity to ready yourselves up to land up in the business school of your choice. The Office of International Relations and Higher Studies has scheduled a webinar on ‘How to Crack Admission into a great B-School’, with the leading educational experts Mr Rajesh Balasubramanian and Mr K S Baskar, as part of their Summer Crash Course Training Programme.

Date: July 01, 2022

Time: 11 am to 12.30 pm

Millions of ambitious students are enrolling in business management courses both inside and outside the country. The leading business schools offer courses that introduce students to different facets of business and impart them the necessary skills to hold management and leadership positions in any field of work. Having countless institutions to choose from, serious thought must be given to choosing the right school and shaping oneself with the relevant knowledge and skill set to grab admission there.

Speakers’ Profiles

Mr Rajesh Balasubramanian is an Electrical Engineer from IIT, Madras, Class of 2001 and completed his PGDM from IIM Bangalore in 2003. He runs 2IIM’s CAT program and has built most of the content for the 2IIM CAT Online Course.He scored 100th percentile in CAT 2011, CAT 2012, CAT 2014 and CAT 2017. Rajesh also runs PiVerb – an Ed-Tech company that focuses on teaching math intuitively to students from class V to class X.

Mr K S Baskar founded 2IIM and continues to head the parent company. He is a Mechanical Engineer from College of Engineering, Guindy, Class of 1991 and completed his PGDM from IIM Calcutta in 1994. Baskar runs Wizako, the Market leader for online coaching for GMAT and GRE in India. Baskar has been a trainer for 25 years and has mentored more than 25000 students. Several of his students are graduates from IIM A, B, C, Harvard, Wharton and Stanford.

Join the webinar with Mr Rajesh Balasubramanian and Mr K S Baskar as they walk you through an exciting journey into the elite B Schools you’ve always dreamt of.

Abroad Education Webinar SRMAP

Have you ever been nervous at the thought of writing competitive exams? Have you ever tried tricks to get the better of such exams? It is very natural that students hold fear and dislike towards such tests as they were conditioned to believe that their future hangs at the mercy of an examination. Preparing for such standardised academic tests is a complicated process as one barely knows what to learn and where to start. But the more critical question is how to learn. A clear picture of how to learn and give their best shot at such tests will help smoothen their pathway.

The Office of International Relations and Higher Studies has scheduled a webinar on ‘Abroad Education and the Road to Ivy League Universities’ with Mr J V Murty as the keynote speaker. He will walk students through the learning process of different types of standardised tests to grab a great score and ease their pathway towards overseas education.

Date: June 29, 2022

Time: 11.00am to 3.45pm

About the Speaker

Mr J V Murty is one of the most revered educators in the field of training for competitive examinations and abroad education consulting in the country. He specialises in preparing students to ivy league universities in the USA and IIMs/ISB in India.

He is a gold medalist from NIT Rourkela. He worked for the Visakhapatnam Steel Plant and Siemens in West Germany. He served as Director for T.I.M.E for more than 20 years. He has also trained and sent more than 3000 students to different IIMs and prestigious Business Schools during this time.

He served as Vice-chairman for Woxsen University and is currently working as CEO at Ashoka School of Business.

He gave CAT 17 times and scored 100% 4 times. He also holds a 339 out of 340 in GRE and a 9 on 9 in IELTS.

Join the webinar with Mr J V Murty, the master trainer, and chart your path to the Ivy League Universities!

ranjit thapa

The Department of Physics is proud to announce that Prof Ranjit Thapa and his PhD scholar Mr Samadhan Kapse have published an article titled “Lewis acid-dominated aqueous electrolyte acting as co-catalyst and overcoming N2 activation issues on catalyst surface” in the most prestigious and highly cited multidisciplinary research journal, ‘Proceedings of the National Academy of Sciences’ (PNAS), having an Impact Factor of 11.2. The research was done in collaboration with Ms Ashmita Biswas, Mr Bikram Ghosh, and Dr. Ramendra Sundar Dey from the Institute of Nano Science and Technology (INST), Punjab.

Abstract of the Research

The growing demands for ammonia in agriculture and transportation fuel stimulate researchers to develop sustainable electrochemical methods to synthesize ammonia ambiently, to get past the energy-intensive Haber Bosch process. But the conventionally used aqueous electrolytes limit N2 solubility leading to insufficient reactant molecules in the vicinity of the catalyst during electrochemical nitrogen reduction reaction (NRR). This hampers the yield and production rate of ammonia, irrespective of how efficient the catalyst is. Herein we introduce a new aqueous electrolyte (NaBF4), which not only acts as an N2-carrier in the medium but also works as a full-fledged “co-catalyst” along with our active material MnN4 to deliver high yield of NH3 (328.59 μg h-1 mgcat-1) at 0.0 V vs RHE. BF3-induced charge polarization shifts the metal d-band center of MnN4 unit close to the Fermi level, inviting N2 adsorption facilely. The Lewis acidity of the free BF3 molecules further propagates their importance in polarizing the N≡N bond of the adsorbed N2 and its first protonation. This push-pull electronic interaction has been confirmed from the change in d-band center values of MnN4 site as well as charge density distribution over our active model units, which turned out to be effective enough to lower the energy barrier of the potential determining steps of NRR. Resultantly, a high production rate of NH3 (7.37 × 10-9 mol s-1 cm-2) was achieved, approaching the industrial scale where the source of NH3 was thoroughly studied and confirmed to be chiefly from the electrochemical reduction of the purged N2 gas.

A Brief Summary of the Research

The widely highlighted problem of NRR is that the competitive HER is most likely worked upon with several catalyst development and electrolyte modifications, while the N2 solubility and activation issues in the aqueous medium are generally neglected. This work justifies our aim to contribute towards this troublemaker by using NaBF4 as a working electrolyte, which served as a “full-packaged co-catalyst” along with MnN4, reinforcing the NRR kinetics at the cost of low overpotential. The Lewis-acidic nature of BF3 induced adduct formation with the N2 molecules acted as a carrier of N2 gas into the medium in vicinity of the electrocatalyst. Simultaneously, the charge polarization over MnN4 active site due to BF3 delocalized the metal d-band centre, which triggered N2 adsorption on the catalyst site. Under this condition, free BF3 form the medium interacted with the adsorbed N2 and brought about the facile polarization of the N≡N bond and its first protonation at a much lower energy barrier. This push-pull charge transfer effect enormously helped to overcome the potential determining steps and this BF3 mediated NRR resulted in a huge production rate of NH3, which could be compared to that of industrial scale, which was not achieved so far with any aqueous or ionic liquid electrolytes. In short, this kind of user-friendly aqueous electrolyte is being investigated for the first time for NRR. Since BF3 displayed tremendous potential in triggering the kinetics of NRR, this new finding may encourage researchers to work more on aqueous electrolyte designing towards an even improved NRR performance of the electrocatalysts. Not only that, electrocatalysts could also be functionalized with BF3 derivatives, which could be one entirely new route of study in the field of NRR.

Social Implications

Ammonia is considered as the most abundant and widely used synthetic fertilizer in the world. The sole mean of large-scale ammonia production relies on the century-old Haber-Bosch process, which takes in more energy than it can produce, while the electrochemical nitrogen reduction reaction (NRR) offers a carbon-free and sustainable way of ammonia synthesis. However, electrochemical NH3 synthesis is often arrested by a few factors such as NH3 detection, contaminations from source gases, nitrogen-containing chemicals and the presence of labile nitrogen in the catalysts. In the recent past, several protocols have been proposed to correct the fallacious results. Recently, Choi et el. have concluded that it is difficult to believe from the too-low yield rate of NH3 that the reduction of N2 has actually occurred in the aqueous medium. It is noteworthy that the electrolyte plays a crucial role and offers a suitable environment for any electrochemical reactions to occur. However, the issue with the solubility of N2 in conventional aqueous electrolytes is a real troublemaker to achieve a high yield and production rate of NH3 during electrochemical synthesis. Therefore, it is necessary to solve the most important issue i.e., to solvate a promising concentration of N2 molecules into the electrolyte such that it becomes accessible to the catalyst surface for its subsequent reduction.


sunil chinnadurai

Intelligent Transportation System (ITS) is on its way to becoming the biggest player in the coming-of-age transportation system. However, the sheer demand for the enormous amount of data to secure seamless connectivity and functioning with maximum speed and safety tends to increase the power consumption of the ITS. Dr Sunil Chinnadurai and his PhD scholar Mr Shaik Rajak from the Department of Electronics and Communication Engineering present Intelligent Reflecting Surfaces (IRS) as the key enabling technology to provide the data required by the ITS with less power consumption.

Their article “Deep Learning Enabled IRS for 6G Intelligent Transportation Systems: A Comprehensive Study” which makes a comprehensive study on the DL-enabled IRS-aided ITS was published in the esteemed journal ‘IEEE Transactions on Intelligent Transportation Systems’ having an Impact factor of 6.5. The article elucidates the ways and means to overcome the channel estimation, secrecy rate, and energy efficiency optimisation problems.

The research suggests that connecting ITS to wireless networks via IRS will help in reaching the destination within the stipulated time duration with enhanced safety and comfort. Besides highlighting the reduced power consumption and hardware cost of the DL-enabled IRS-aided ITS, the article also projects that IRS usage in 6G-ITS massively helps the traffic control system to precisely send and receive the information of school buses as well as healthcare vehicles like ambulances, fire safety vehicles, etc. Their future research plans also include the experimental analysis of energy efficiency for wireless networks and Intelligent Transportation Systems with IRS.

Abstract of the Research

Intelligent Transportation Systems (ITS) play an increasingly significant role in our life, where safe and effective vehicular networks supported by sixth generation (6G) communication technologies are the essence of ITS. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications need to be studied to implement ITS in a secure, robust, and efficient manner, allowing massive connectivity in vehicular communications networks. Besides, with the rapid growth of different types of autonomous vehicles, it becomes challenging to facilitate the heterogeneous requirements of ITS. To meet the above needs, intelligent reflecting surfaces (IRS) are introduced to vehicular communications and ITS, containing the reflecting elements that can intelligently configure incident signals from and to vehicles. As a novel vehicular communication paradigm at its infancy, it is key to understand the latest research efforts on applying IRS to 6G ITS as well as the fundamental differences with other existing alternatives and the new challenges brought by implementing IRS in 6G ITS. In this paper, we provide a big picture of deep learning enabled IRS for 6G ITS and appraise most of the important literature in this field. By appraising and summarizing the existing literature, we also point out the challenges and worthwhile research directions related to IRS aided 6G ITS.

anirban bose

The Department of Mathematics is glad to announce that Dr Anirban Bose, Assistant Professor, has published an article, ‘Twisted conjugacy in linear algebraic groups II’ in the Q1 journal, Journal of Algebra. The paper was published in collaboration with Sushil Bhunia from Indian Institute of Science Education& Research, Mohali. The present work and its prequel “Twisted conjugacy in linear algebraic groups” are concerned with computing the number of orbits of a twisted conjugacy action of an algebraic group on itself. Dr Bose’s interests mainly lie studying the properties of groups of matrices.

Here’s the link to the article.


SRM University-AP celebrated International Yoga Day 2022 illuminating the vitality of practising yoga in the backdrop of the chaotic and disruptive scenario of the present times. Accomplished heartfulness practitioners Mr Venkata Krishna Kumar S and Mr Ram Pavan were the guests of honour of the day. Registrar Dr Prem Kumar, and Dean-SEAS Prof B V Babu, welcomed and felicitated the invitees.

Prof B V Babu addressed the gathering and expounded on the significance of Yoga. He highlighted the power of yoga in activating the connection between body, mind, and soul. Essentially, it is the lack of unison between these elements, which leads to a confused and disorganised self. He exhorted the students to make yoga an indispensable part of their lives to discover their higher selves.

Mr Venkata Krishna Kumar interacted with the students and rendered an edifying lecture on the true meaning and benefits of yoga. Emphasising the theme of this year’s yoga day, ‘Yoga for Humanity’, he spelt out how the word ‘unity’ is already embedded in humanity. The unrest and anarchy broken out across different parts of the world is undeniably a consequence of the absence of this unity. He expressed how yoga would help one to rise to a higher level of consciousness and unite with the world around.

He also focused on yoga’s power in liberating the mind from all meaningless entanglements and thoughts. Students were also made to meditate and reflect on all random thoughts that cropped up in their minds. Yoga is not just about physical exertion and regulating bodily functions. It fundamentally aims at bringing the mind under control and emancipating it from all worldly distress.

The session was presided over by Mr Ram Pavan. He shed light on different aspects of yoga and explained how it helps in exploring and purifying our consciousness. He also demystified the essence of heartfulness meditation and implored the students to practise meditation. Ms Revathi Balakrishnan, Assistant Director, Student Affairs, proposed the vote of thanks. The guests of honour were presented with mementoes as a token of gratitude for gracing the celebrations with their invaluable presence.

cyber poaching

Wireless Sensor Networks (WSNs) and their derivatives such as Internet of Things (IoT) and the Internet of Industrial Things (IIOT) are no longer confined to traditional applications such as smart homes and transportation. It has already marked its presence in Industrial applications and extended even to wildlife conservation. The impending concerns associated with such wireless networks are their privacy and security. One such menace afflicting wildlife is cyber poaching. Taking this into consideration, Dr Manjula R, Assistant Professor, and her student Mr Tejodbhav Koduru, from the Department of Computer Science and Engineering, have published a paper, “Position-independent and Section-based Source Location Privacy Protection in WSN” in the journal, ‘IEEE Transactions on Industrial Informatics’ having an Impact Factor of 10.215. The article is published in collaboration with Ms Florence Mukamanzi from the University of Rwanda, Rwanda, Africa and Prof Raja Datta from IIT Kharagpur, West Bengal, India.

The sensors collect data about these endangered animals and report it to the central controller which is connected to the Internet. Over the period, the hunters have also evolved and are equipped with smart devices that help them to easily locate the animal with minimal effort. In the simplest form, the attacker or the hunter just eavesdrops on the communication links to know the message’s origin and backtrack to the source of information. Once the source of information i.e., the location is identified then the endangered animal is captured. To overcome such backtracking issues, their work aims at delaying the information disclosure to the attacker through traffic obfuscation.

Although it may not act as an ultimate solution, the research work focuses on contextual privacy, unlike traditional content privacy. The attacker collects only contextual information such as packet rate, traffic intensities, routing paths, time correlations etc., to determine the source of information. The work focuses on mitigating traffic correlation i.e., hop-by-hop backtrack attacks and protecting the assets that are monitored using WSNs. The performance metrics include safety period and network lifetime amongst other metrics. The proposed random-walk-based routing solution achieves an improved safety period and network lifetime compared to the existing schemes. The work was simulated using a custom-designed simulation tool and was validated with the numerical results obtained using mathematical models.

The proposed solutions could be seamlessly used in monitoring endangered animals such as rhinoceros or in military applications to track soldiers. In addition, the routing algorithm could also be used in delaying tolerant networks to improve the efficiency and lifetime of the network, in designing the random trajectories of bio-nano bots for intrabody monitoring etc. Their future research plan includes developing improved source location privacy preservation techniques for terrestrial and underwater wireless sensor networks using the benefits of Artificial Intelligence and Machine Learning. In addition, they also aims at the development of data collection and routing protocols for intrabody nanonetwork operating at tera hertz frequencies— next-generation networks, envisioned networks.

The Department of Electrical and Electronics Engineering is proud to announce that the estimable book of Springer Nature, ‘Soft Computing: Theories and Applications’ has featured three publications by Dr Tousif Khan, Assistant Professor. His publications are part of the book series, Lecture Notes in Networks and Systems (LNNS), Volume 425. The book stimulates discussions on various emerging trends, innovations, practices, and applications in the field of soft computing, ranging from data mining, prediction analysis, control systems, image processing, health care, medicine, agriculture analysis, supply chain management and cryptanalysis etc.

tousif khanThe first chapter titled “Design of Fast Battery Charging Circuit for Li-Ion Batteries” was co-authored by Dr Khan along with the final year EEE students; P Manoj Sai, G Nithin Sai, Puja Manohari, and P Gopi Krishna. In this chapter, a battery charging topology has been designed and developed for the fast charging of Li-ion batteries. The charging circuitry comprises a Proportional-Integral-Derivative (PID) controlled DC-DC buck converter system for reducing the charging time in Li-ion batteries. Battery charging time depends on several factors and the charging current is one of the major criteria. In this work, the buck converter is used to attain a high charging current, besides providing the regulated voltage to the battery. Initially, the AC supply obtained from the mains is converted to DC using an AC-DC rectifier. The rectifier output is further fed to the buck converter to increase the output current of the circuit. The buck converter reduces the output voltage and increases through it.

The circuit parameters are designed by considering the commercially available Lithium-ion battery LIR18650 as the load with a capacity of 2600 mAh and a nominal voltage of 3.7 V. The considered battery requires a standard charging current of 0.5 A, however, the circuit is designed to provide the rapid charge current of 1.3 A as the output by using the buck converter. The converter is operated in continuous conduction mode and helps in charging the battery under constant current mode. To avoid interruption to the charging current when there is a simultaneous discharge of the battery, further improvement in the closed-loop control action is made by employing a PID controller. Extensive simulation work has been conducted using the MATLAB/Simulink tool. The results obtained suggest there is a significant reduction in charging time under different conditions compared to the conventional method of battery charging.

tousif khanIn the chapter, “Global Horizontal Solar Irradiance Forecasting Based on Data-Driven and Feature Selection Techniques”, Dr Khan discusses the need for an accurate solar prediction. It has become an essential part of the renewable energy sector with the rapidly expanding infrastructure of the solar energy system. Over the past decade, various machine learning (ML) algorithms have been used for this purpose. Although the prediction of solar irradiance forecasting has been discussed in many studies, the use of meta-heuristic optimization techniques has not been explored to select features for the forecasting model. This study comprises two meta-heuristic optimization techniques such as simulated annealing (SA) and ant colony optimization (ACO) for feature selection. The results show that feature selection based on meta-heuristics gave better results than models without feature selection.

Amongst the two optimization methods, ACO outperformed SA with some exceptions. For SA, the declining order of performance observed is extreme gradient boosting (XGBoost), random forest (RF), multilayer perceptron (MLP), decision tree (DT) and support vector regression (SVR), while for ACO the declining order observed is XGBoost followed by MLP, RF, DT and SVR. This manuscript indicates the potential capability of meta-heuristic techniques for accurate prediction of global horizontal irradiance (GHI) given a wide array of feature variables.

tousif khanIn yet another chapter, “Exhaustive Search Approach to Place PV in Radial Distribution Network for Power Loss Minimization”, co-authored with Dr Shubh Lakshmi, Assistant Professor, and the final year students; P Manoj Sai and M Dhana Sai Baji from the Department of Electrical and Electronics Engineering, an exhaustive search approach to determine the best location and size of PV placement for power loss minimization of radial distribution networks is discussed. In this approach, the network power loss is determined by placing PV in each location, one at a time, and the size of PV in the same location is varied between 10 and 300 kW with an increment of 10 kW.

The combination of location and size of PV which provides the minimum network power loss can be the best location and size of PV for power loss minimization of radial distribution networks. The forward–backward sweep load flow algorithm is used to incorporate the PV model. The 33-bus radial distribution network is used to demonstrate the approach. The simulation results show that the placement of a suitable size of PV in some specific locations significantly reduces the network power loss.

Publishing the latest advancements in Networks and Systems, The LNNS series will serve as an edifying read for all the researchers and scientists across the globe. Volumes published in LNNS give a deep insight into all aspects and subfields of, as well as new challenges in, Networks and Systems. The series encompasses the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.