Anecdote:

“Since my school days, I have been fascinated by writing cryptic text, though intelligible. It all started with mirror-writing the teaching-feedback that was requested by our class teacher Tr. Jezuine. Once the feedback was read, the teacher called me and asked: “How did you learn this?” I was on cloud nine and replied, “it just happened only for you”, with a massive smile on my face. Later, I never thought of any secret writing for a while. It was only during the initial days of my teaching profession; I had the opportunity to read my classmate’s notes scribbled in a cryptic text which triggered further enthusiasm in me. So, during my postgraduate course, I started reading and presenting seminars on Cryptography and Security. This further led to deeper digging into the core of security aspects that also led to a trivial postgraduate project on key-establishment in wireless sensor networks. Later during the research period, I chose a new upcoming area – wireless sensor networks (broader domain), and contextual- and content- privacy (narrower domain) – privacy preservation in WSNs as my research topic.”

-Dr Manjula R

The Issue:

The significance: The privacy of individuals is being compromised gradually with the increasing popularity and rapid deployment of pervasive computing technologies. The benefits and conveniences offered by modern devices often lead people to neglect the dire consequences of possible privacy violations. Therefore, privacy risks should be taken into considerations while designing responsible technologies. One such technology that poses serious privacy risks is the Wireless Sensor Networks (WSNs). Despite the enormous benefits offered by WSNs to humanity, several issues need meticulous attention. Security and privacy are such issues in WSNs. For instance, the US military aims to adopt Internet of Things (IoT) enabled WSN. The usage of WSNs, Unmanned Aerial Vehicles (UAVs), tiny robots (nanoscale robots) are envisioned to transform the battlefield scenario. In particular, these digital devices and components are embedded in soldiers’ uniforms to collect the health status of the worriers and relay this information to a central controller, named the base station (BS). The BS is located near places where the internet is easily accessible. Nevertheless, WSNs are deployed in areas where it is challenging to have internet. However, this problem is easily solved with the amalgamation of WSNs and IoT. This comes with unwelcoming consequences. The unattended nature of these networks provides an attacker with physical access to the devices. The attacker may compromise the node and conduct illegal activities, say, mimic fake chemical leakages etc. Furthermore, the broadcast nature of the transmission medium gives access to the packets exchanged by the sensor nodes to anyone within the communication range. Consequently, adversaries may exploit these features of WSNs in order to launch attacks against the network and thus render all the potential benefits offered by this technology unusable. Hence, privacy preservation in WSNs is a significant issue that needs to be addressed to safeguard personal and private assets—soldiers or endangered animals etc.

In a quest to provide countermeasures to such attacks, Dr Manjula R and her team are developing privacy preserved solutions with particular emphasis on routing in WSNs. Their recent research article titled “Protecting Source Location Privacy in IoT Enabled Wireless Sensor Networks: The Case of Multiple Assets” has been accepted for publication in a peer-reviewed journal – IEEE Internet of Things Journals. This work is co-authored by Prof. Raja Datta, IIT Kharagpur and Mr Tejodbhav Koduru (studying in 5th semester in dept. of CSE, SRM University AP). The SCI-indexed journal has an impact factor of 9. 396. The team is also focusing on the development of new countermeasures to mitigate eavesdropping attacks in WSNs.


The summit will start in April 2022 in Kathmandu
G Ram Dheeraj, third-year Civil Engineering at SRM University-AP, has been selected to climb Mount Everest, the world’s highest mountain. The adventurous peak climbing expedition will begin in April 2022. He has already climbed three major peaks in the Himalayan range and is selected for the summit by the Asian Trekking Pvt Ltd. The mountains that he has set foot on are Shitindhar Peak (5358 m), Friendship Peak (5287 m) and Deo Tibba Peak (6001 m). He has also completed a mountaineering course from ABVIMAS in Kulu Manali. Ram Dheeraj, who hopes to reach the summit of Mt. Everest through rigorous preparation, seeks kind sponsors to come forward and fund the expenses of ₹27 lacs. Prof V S Rao, Vice-Chancellor; Prof Narayana Rao, Pro-Vice-Chancellor; and the management of SRM University-AP, congratulated Ram Dheeraj for his exceptional enthusiasm to conquer extremely high altitudes.

Vartha – Dec 15

Surya – Dec 15

Visaalandhra – Dec 15

Hans India – Dec 24

Global GreenNews – Dec 24

Praja Shakti – Dec 24

Sakshi – Dec 24

Surya – Dec 24

Vartha Prapancham – Dec 24

Global GreenNews – Dec 31

Andhra Prabha – Dec 31

Vartha – Dec 31

Prajasakthi – Dec 31

Surya – Dec 31

Sakshi – Dec 31

Visaalandhra – Dec 31

engineered nanoenzymesThe Department of Environmental Science is proud to announce that Dr Lakhveer Singh has published his paper titled, “Engineered Nanoenzymes with Multifunctional Properties for Next-Generation Biological and Environmental Applications” in Advanced Functional Materials with an impact factor of 18.50.

About the Paper:

Enzyme mimicking studies took on a new aspect as it turns out that inorganic nanomaterials could have intrinsic enzyme-like activities. The word nanozyme (nanoenzyme) was first coined to describe the ribonuclease-like activity of ligand functionalised gold nanoparticles in 2004. Since then, various research has been continued on nanomaterials with enzyme-like activity. Thus, nanoenzyme has come to describe nanomaterials with enzyme-like activity.

Abstract:

As a powerful tool, nanoenzyme electrocatalyst broadens the ways to explore bioinspired solutions to the world’s energy and environmental concerns. Efforts to fashion novel nanoenzymes or engineering nanoenzymes for effective electrode functionalisation is generating innovative, viable catalysts with high catalytic activity, low cost, high stability and versatility, and ease of production. High chemo-selectivity and broad functional group tolerance of nanoenzyme with an intrinsic enzyme-like activity make them an excellent environmental tool. The catalytic activities and kinetics of nanoenzymes that benefit the development of nanoenzyme-based energy and environmental technologies by effectual electrode functionalisation are discussed in this article. Further, deep insight on recent developments in the state-of-art of nanoenzymes either in terms of electrocatalytic redox reactions (viz. oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction and hydrogen evolution reaction) or environmental remediation/treatment of wastewater/or monitoring of a variety of pollutants. The complex interdependence of the physicochemical properties and catalytic characteristics of nanoenzymes are discussed, along with the exciting opportunities presented by nanomaterial-based core structures adorned with nanoparticle active-sites shell for enhanced catalytic processes. Thus, such modular architecture with multi-enzymatic potential introduces an immense scope of making its economical scale-up for multielectron-fuel or product recovery and multi-pollutant or pesticide remediation as reality.

Collaboration:

The assignment on “Engineered Nanoenzyme” was completed with the Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, the Republic of Korea, along with other universities.

Social and Industrial Implications:

Trends of nanoenzyme are replacing conventional enzymes, particularly in a microbial bioelectrofuel biosystem, as cheap and efficient electrocatalysts. In this account, various strategies from altering scaffold to point alteration and iterative targeted tailoring have been applied to improve the enzyme-like activity and selectivity of the artificial enzymes.

Future Plans:

Strategies need to be devised to increase the mass loading of both homogenous and heterogeneous nanoenzyme for higher current density. Though, area of nanoenzyme is in its growing stage, engineering nanoenzyme with improved catalytic performance comparable to or even higher than that of the natural enzyme is one of the most concerning issues at this moment. Besides, the future breakthrough in nanoenzyme technology will lead to the development of novel catalysts with wider applications in multiple disciplines.